Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

An Investigation Of The Effect Of Direct Metal Deposition Parameters On The Characteristics Of The Deposited Layers, Tarak A. Amine, Joseph William Newkirk, Frank W. Liou Jul 2014

An Investigation Of The Effect Of Direct Metal Deposition Parameters On The Characteristics Of The Deposited Layers, Tarak A. Amine, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

Multilayer direct laser deposition (DLD) is a fabrication process through which parts are fabricated by creating a molten pool into which metal powder is injected as particles. During fabrication, complex thermal activity occurs in different regions of the build; for example, newly deposited layers will reheat previously deposited layers. The objective of this study was to provide insight into the thermal activity that occurs during the DLD process. This work focused on the effect of the laser parameters of newly deposited layers on the microstructure and mechanical properties of the previously deposited layers in order to characterize these effects to …


Thermophysical And Mechanical Properties Of Hardened Cement Paste With Microencapsulated Phase Change Materials For Energy Storage, Hongzhi Cui, Wenyu Liao, Shazim Ali Memon, Biqin Dong, Waiching Tang Jan 2014

Thermophysical And Mechanical Properties Of Hardened Cement Paste With Microencapsulated Phase Change Materials For Energy Storage, Hongzhi Cui, Wenyu Liao, Shazim Ali Memon, Biqin Dong, Waiching Tang

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs) incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement) were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that …