Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Mechanical Engineering

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Control Synthesis

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

An Optimal Dynamic Inversion Approach For Controlling A Class Of One-Dimensional Nonlinear Distributed Parameter Systems, Radhakant Padhi, S. N. Balakrishnan Jan 2006

An Optimal Dynamic Inversion Approach For Controlling A Class Of One-Dimensional Nonlinear Distributed Parameter Systems, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a …


Adaptive Critic Based Neural Networks For Control (Low Order System Applications), S. N. Balakrishnan, Victor Biega Jan 1995

Adaptive Critic Based Neural Networks For Control (Low Order System Applications), S. N. Balakrishnan, Victor Biega

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Dynamic programming is an exact method of determining optimal control for a discretized system. Unfortunately, for nonlinear systems the computations necessary with this method become prohibitive. This study investigates the use of adaptive neural networks that utilize dynamic programming methodology to develop near optimal control laws. First, a one dimensional infinite horizon problem is examined. Problems involving cost functions with final state constraints are considered for one dimensional linear and nonlinear systems. A two dimensional linear problem is also investigated. In addition to these examples, an example of the corrective capabilities of critics is shown. Synthesis of the networks in …