Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Optimal Synthesis Of Crank-Rocker Mechanisms With Optimum Transmission Angle For Desired Stroke And Time-Ratio Using Genetic Programming, Bahman Ahmadi, Behnam Ahmadi Oct 2022

Optimal Synthesis Of Crank-Rocker Mechanisms With Optimum Transmission Angle For Desired Stroke And Time-Ratio Using Genetic Programming, Bahman Ahmadi, Behnam Ahmadi

Michigan Tech Publications

Dimensional synthesis of crank-rocker mechanisms applied to provide some desired values of stroke and time ratio, is of utmost importance for designing an efficient mechanism. In the synthesis and manufacturing of crank-rocker mechanisms, the designers are further challenged by other design criteria, such as quality of motion. In this study, a novel approach based on genetic programming (GP) is proposed for dimensional synthesis of planar crank-rocker mechanisms with optimum transmission angle over the desired stroke and time-ratio. An analytical approach is elaborated which leads to an interesting relationship of length of the coupler and rocker links. It is, therefore, advised …


Concrete Delamination Depth Estimation Using A Noncontact Mems Ultrasonic Sensor Array And An Optimization Approach, Homin Song, Jinyoung Hong, Hajin Choi, Jiyoung Min Jan 2021

Concrete Delamination Depth Estimation Using A Noncontact Mems Ultrasonic Sensor Array And An Optimization Approach, Homin Song, Jinyoung Hong, Hajin Choi, Jiyoung Min

Michigan Tech Publications

In this study, we present a method to estimate the depth of near-surface shallow delamination in concrete using a noncontact micro-electromechanical system (MEMS) ultrasonic sensor array and an optimization-based data processing approach. The proposed approach updates the bulk wave velocities of the tested concrete element by solving an optimization problem using reference ultrasonic scanning data collected from a full-depth concrete region. Subsequently, the depth of concrete delamination is estimated by solving a separate optimization problem. Numerical simulations and laboratory experiments were conducted to evaluate the performance of the proposed ultrasonic data processing approach. The results demonstrated that the depth of …


Development Of A Method To Model An Enclosed, Coaxial Carbon Nanotube Speaker With Experimental Validation, Suraj Prabhu Jan 2021

Development Of A Method To Model An Enclosed, Coaxial Carbon Nanotube Speaker With Experimental Validation, Suraj Prabhu

Dissertations, Master's Theses and Master's Reports

Carbon nanotube (CNT) speakers operate on heat as compared to conventional loudspeakers that operate on vibration. CNT speakers are extremely lightweight, stretchable, flexible, and have high operating temperatures. Due to these advantages, CNT speakers are being considered as a viable replacement option for conventional loudspeakers. One such application is automotive exhaust noise control. The goal of this research is to design an enclosed, coaxial CNT speaker and to develop a modeling method to model this speaker using COMSOL Multiphysics.

As part of this research, an enclosed, coaxial CNT speaker was designed and manufactured for automotive exhaust noise control. The first …


Optimization Of Shape And Control Of Linear And Nonlinear Wave Energy Converters, Jiajun Song Jan 2020

Optimization Of Shape And Control Of Linear And Nonlinear Wave Energy Converters, Jiajun Song

Dissertations, Master's Theses and Master's Reports

In this dissertation, we address the optimal control and shape optimization of Wave Energy Converters. The wave energy converters considered in this study are the single-body heaving wave energy converters, and the two-body heaving wave energy converters. Different types of wave energy converters are modeled mathematically, and different optimal controls are developed for them. The concept of shape optimization is introduced in this dissertation; the goal is to leverage nonlinear hydrodynamic forces which are dependent on the buoy shape. In this dissertation, shape optimization is carried out and its impact on energy extraction is investigated. In all the studies conducted …


Development Of An Eco Approach And Departure Application To Improve Energy Consumption Of A Plug-In Hybrid Vehicle In Charge Depleting Mode, Brandon Narodzonek Jan 2020

Development Of An Eco Approach And Departure Application To Improve Energy Consumption Of A Plug-In Hybrid Vehicle In Charge Depleting Mode, Brandon Narodzonek

Dissertations, Master's Theses and Master's Reports

A recent study at Michigan Technological University as part of the NEXTCAR DOE APRA-E Project was conducted to determine the potential energy savings of a plug-in hybrid electric vehicle (PHEV) equipped with various Connected and Automated Vehicle (CAV) Technologies. One aspect of this study focused on the development of an Eco Approach and Departure (Eco AnD) Application that would further reduce the energy consumed around a signalized intersection.

Many modern intersections are equipped with traffic signals that can broadcast Basic Safety (BSM), MAP, and Signal Phase and Timing (SPaT) message sets that contain intersection ID, location, current phase, and cyclic …


Hybrid Electric Vehicle Energy Management Strategy With Consideration Of Battery Aging, Bin Zhou Jan 2020

Hybrid Electric Vehicle Energy Management Strategy With Consideration Of Battery Aging, Bin Zhou

Dissertations, Master's Theses and Master's Reports

The equivalent consumption minimization strategy (ECMS) is a well-known energy management strategy for Hybrid Electric Vehicles (HEV). ECMS is very computationally efficient since it yields an instantaneous optimal control. ECMS has been shown to minimize fuel consumption under certain conditions. But, minimizing the fuel consumption often leads to excessive battery damage. The objective of this dissertation is to develop a real-time implementable optimal energy management strategy which improves both the fuel economy and battery aging for Hybrid Electric Vehicles by using ECMS. This work introduces a new optimal control problem where the cost function includes terms for both fuel consumption …


Optimal Mission Planning Of Autonomous Mobile Agents For Applications In Microgrids, Sensor Networks, And Military Reconnaissance, Casey D. Majhor Jan 2020

Optimal Mission Planning Of Autonomous Mobile Agents For Applications In Microgrids, Sensor Networks, And Military Reconnaissance, Casey D. Majhor

Dissertations, Master's Theses and Master's Reports

As technology advances, the use of collaborative autonomous mobile systems for various applications will become evermore prevalent. One interesting application of these multi-agent systems is for autonomous mobile microgrids. These systems will play an increasingly important role in applications such as military special operations for mobile ad-hoc power infrastructures and for intelligence, surveillance, and reconnaissance missions. In performing these operations with these autonomous energy assets, there is a crucial need to optimize their functionality according to their specific application and mission. Challenges arise in determining mission characteristics such as how each resource should operate, when, where, and for how long. …


Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein Jan 2019

Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein

Dissertations, Master's Theses and Master's Reports

The US military is moving toward the electrification of many weapon systems and platforms. Advanced weapon systems such as high energy radar, electro-magnetic kinetic weapons and directed energy pose significant integration challenges due to their pulsed power electrical load profile. Additionally, the weapons platforms, including ships, aircraft, and vehicles can be studied as a mobile microgrids with multiple generation sources, loads, and energy storage. There is also a desire to extend the mission profile and capabilities of these systems. Common goals are to increase fuel efficiency, maintaining system stability, and reduce energy storage size as typically required to enable pulsed …


Optimization And Control Of Arrays Of Wave Energy Converters, Jianyang Lyu Jan 2019

Optimization And Control Of Arrays Of Wave Energy Converters, Jianyang Lyu

Dissertations, Master's Theses and Master's Reports

Wave Energy Converter Array is a practical approach to harvest ocean wave energy. To leverage the potential of the WEC array in terms of energy extraction, it is essential to have a properly designed array configuration and control system. This thesis explores the optimal configuration of Wave Energy Converters (WECs) arrays and their optimal control. The optimization of the WEC array allows both dimensions of individual WECs as well as the array layout to varying. In the first optimization problem, cylindrical buoys are assumed in the array where their radii and drafts are optimization parameters. Genetic Algorithms are used for …


Design Optimization Of Polymer Heat Exchanger For Automated Household-Scale Solar Water Pasteurizer, David C. Denkenberger, Joshua M. Pearce Apr 2018

Design Optimization Of Polymer Heat Exchanger For Automated Household-Scale Solar Water Pasteurizer, David C. Denkenberger, Joshua M. Pearce

Department of Materials Science and Engineering Publications

A promising approach to reducing the >870,000 deaths/year globally from unsafe water is flow-through solar water pasteurization systems (SWPs). Unfortunately, demonstrated systems have high capital costs, which limits access for the poor. The most expensive component of such systems is the heat exchanger (HX). Thus, this study focuses on cost optimization of HX designs for flow-through SWPs using high-effectiveness polymer microchannel HXs. The theoretical foundation for the cost optimization of a polymer microchannel HX is provided, and outputs are plotted in order to provide guidelines for designers to perform HX optimizations. These plots are used in two case studies: (1) …


Optimization And Control Of An Array Of Wave Energy Converters, Jianyang Lyu Jan 2018

Optimization And Control Of An Array Of Wave Energy Converters, Jianyang Lyu

Dissertations, Master's Theses and Master's Reports

This study explored optimal configuration of both the array layout and the dimension of each WEC in the array. The array contains heaving buoys with full interaction and exact hydrodynamics. Optimization of dimension was done on each WEC in the array with a given optimal layout, and a higher q-factor was achieved. Both impedance matching optimal control and derivative control were employed, which provides both theoretical maximum energy and a more realistic case. Then the work was expanded to optimization of both the array layout and the dimension of each WEC in the array. An average of 39.21% higher q-factor …


Minimum Time Control Of Paralleled Boost Converters, Shishir Patel Jan 2017

Minimum Time Control Of Paralleled Boost Converters, Shishir Patel

Dissertations, Master's Theses and Master's Reports

Demand for electrification is booming in both, traditional and upcoming generations of technological advancements. One of the constituent blocks of these electrified systems is Power conversion. Power conversion systems are often constructed by paralleling multiple power converter blocks for high performance and reliability of overall system. An advanced control technique is developed with an aim to optimize system states of heterogeneous power converters within minimum time while maintaining feasible stress level on individual power converter blocks. Practical implementation of real-time controller and performance improvement strategies are addressed. Experimental results validating high performance control scheme, and sensitivity analysis of system states …


Optimal Scheduling Of Pev Charging/Discharging In Microgrids With Combined Objectives, Chong Cao, Ming Cheng, Bo Chen Apr 2016

Optimal Scheduling Of Pev Charging/Discharging In Microgrids With Combined Objectives, Chong Cao, Ming Cheng, Bo Chen

Michigan Tech Publications

While renewable power generation and vehicle electrification are promising solutions to reduce greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. The weather-dependent power generation of renewable energy sources, such as Photovoltaic (PV) arrays, could introduce significant intermittency to a power grid. Meanwhile, uncontrolled PEV charging may cause load surge in a power grid. This paper studies the optimization of PEV charging/discharging scheduling to reduce customer cost and improve grid performance. Optimization algorithms are developed for three cases: 1) minimize cost, 2) minimize power deviation from a pre-defined power profile, and 3) combine objective …


Modeling, Simulation And Control Of Hybrid Electric Vehicle Drive While Minimizing Energy Input Requirements Using Optimized Gear Ratios, Sanjai Massey Jan 2016

Modeling, Simulation And Control Of Hybrid Electric Vehicle Drive While Minimizing Energy Input Requirements Using Optimized Gear Ratios, Sanjai Massey

Dissertations, Master's Theses and Master's Reports

This project was conducted to analyze (model and simulate) and optimize an electric motor based drive system to propel a typical passenger vehicle in an urban driving environment. Although there are many HEV and EV type systems on the market today, this paper chose the Toyota Prius HEV system as a baseline using a brushless AC motor.

Although a vehicle can be driven many ways, a more standardized Urban Dynamometer Driving Schedule, UDDS, was chosen to simulate real driving conditions. This schedule is determined by the US Environmental Protection Agency, EPA, and is intended to represent the city driving conditions …


Finite Element Analysis And Topology Optimization Of Differential Case And Control Arm For Static And Fatigue Loading, Pankaj N. Kalan Jan 2016

Finite Element Analysis And Topology Optimization Of Differential Case And Control Arm For Static And Fatigue Loading, Pankaj N. Kalan

Dissertations, Master's Theses and Master's Reports

Optimization of the automobile components can result in a significant decrease in vehicle weight, increase in fuel efficiency and reduction in environmental damage. For example, the lightweight vehicle production will save over 4.4×109 GJ of energy and 4.1×108 tons of CO2 over a 10 year period, compared to the current non-light weight vehicles. This equates to 890 billion miles or 42 billion gallons of gas savings (Wu 2016). This study evaluates the weight reduction possible by using manual and automatic (using Optistruct software) topology optimization processes. Optimization of a vehicle differential case done in this study shows that a weight …


Multidimensional Optimal Droop Control For Wind Resources In Dc Microgrids, Kaitlyn J. Bunker Jan 2014

Multidimensional Optimal Droop Control For Wind Resources In Dc Microgrids, Kaitlyn J. Bunker

Dissertations, Master's Theses and Master's Reports - Open

Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop …


Space Trajectories Optimization Using Variable-Chromosome-Length Genetic Algorithms, Ahmed H. Gad Jan 2011

Space Trajectories Optimization Using Variable-Chromosome-Length Genetic Algorithms, Ahmed H. Gad

Dissertations, Master's Theses and Master's Reports - Open

The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA).

In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden …