Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Michigan Technological University

Series

2018

Additive manufacturing

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Economic Potential For Distributed Manufacturing Of Adaptive Aids For Arthritis Patients N The U.S., Nicole Gallup, Jennifer Bow, Joshua M. Pearce Dec 2018

Economic Potential For Distributed Manufacturing Of Adaptive Aids For Arthritis Patients N The U.S., Nicole Gallup, Jennifer Bow, Joshua M. Pearce

Department of Materials Science and Engineering Publications

By 2040, more than a quarter of the U.S. population will have diagnosed arthritic conditions. Adults with arthritis and other rheumatic conditions earn less than average yet have medical care expenditures that are over 12% of average household income. Adaptive aids can help arthritis patients continue to maintain independence and quality of life; however, their high costs limit accessibility for older people and the poor. One method used for consumer price reduction is distributed manufacturing with 3-D printers. In order to assess if such a method would be financially beneficial, this study evaluates the techno-economic viability of distributed manufacturing of …


3-D Printable Polymer Pelletizer Chopper For Fused Granular Fabrication-Based Additive Manufacturing, Aubrey Woern, Joshua M. Pearce Nov 2018

3-D Printable Polymer Pelletizer Chopper For Fused Granular Fabrication-Based Additive Manufacturing, Aubrey Woern, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Although distributed additive manufacturing can provide high returns on investment, the current markup on commercial filament over base polymers limits deployment. These cost barriers can be surmounted by eliminating the entire process of fusing filament by three-dimensional (3-D) printing products directly from polymer granules. Fused granular fabrication (FGF) (or fused particle fabrication (FPF)) is being held back in part by the accessibility of low-cost pelletizers and choppers. An open-source 3-D printable invention disclosed here allows for precisely controlled pelletizing of both single thermopolymers as well as composites for 3-D printing. The system is designed, built, and tested for its ability …


Development Of A Resilient 3-D Printer For Humanitarian Crisis Response, Benjamin L. Savonen, Tobias Mahan, Maxwell W. Curtis, Jared W. Schreier, John K. Greshonen, Joshua M. Pearce Mar 2018

Development Of A Resilient 3-D Printer For Humanitarian Crisis Response, Benjamin L. Savonen, Tobias Mahan, Maxwell W. Curtis, Jared W. Schreier, John K. Greshonen, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Rapid manufacturing using 3-D printing is a potential solution to some of the most pressing issues for humanitarian logistics. In this paper, findings are reported from a study that involved development of a new type of 3-D printer. In particular, a novel 3-D printer that is designed specifically for reliable rapid manufacturing at the sites of humanitarian crises. First, required capabilities are developed with design elements of a humanitarian 3-D printer, which include, (1) fused filament fabrication, (2) open source self-replicating rapid prototyper design, (3) modular, (4) separate frame, (5) protected electronics, (6) on-board computing, (7) flexible power supply, and …