Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Nitrogen-Doped Carbon Nanospheres-Modified Graphitic Carbon Nitride With Outstanding Photocatalytic Activity, Qiaoran Liu, Hao Tian, Zhenghua Dai, Hongqi Sun, Jian Liu, Zhimin Ao, Shaobin Wang, Chen Han, Shaomin Liu Jan 2020

Nitrogen-Doped Carbon Nanospheres-Modified Graphitic Carbon Nitride With Outstanding Photocatalytic Activity, Qiaoran Liu, Hao Tian, Zhenghua Dai, Hongqi Sun, Jian Liu, Zhimin Ao, Shaobin Wang, Chen Han, Shaomin Liu

Research outputs 2014 to 2021

Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation. However, there are many issues related to these metal-based catalysts for practical applications, such as high cost and detrimental environmental impact due to metal leaching. Carbon-based catalysts have the potential to overcome these limitations. In this study, monodisperse nitrogen-doped carbon nanospheres (NCs) were synthesized and loaded onto graphitic carbon nitride (g-C3N4, GCN) via a facile hydrothermal method for photocatalytic removal of sulfachloropyridazine (SCP). The prepared metal-free GCN-NC exhibited remarkably enhanced efficiency in SCP degradation. The nitrogen content in NC critically influences the physicochemical properties and performances of the …


Tunable Optical Nanocavity Of Iron-Garnet With A Buried Metal Layer, Alexey N. Kuz'michev, Lars E. Kreilkamp, Mohammed Nur-E-Alam, Evgeni Bezus, Mikhail Vasilev, Iliya A. Akimov, Kamal Alameh, Manfred Bayer, Vladimir I. Belotelov Jan 2015

Tunable Optical Nanocavity Of Iron-Garnet With A Buried Metal Layer, Alexey N. Kuz'michev, Lars E. Kreilkamp, Mohammed Nur-E-Alam, Evgeni Bezus, Mikhail Vasilev, Iliya A. Akimov, Kamal Alameh, Manfred Bayer, Vladimir I. Belotelov

Research outputs 2014 to 2021

We report on the fabrication and characterization of a novel magnetophotonic structure designed as iron garnet based magneto-optical nanoresonator cavity constrained by two noble metal mirrors. Since the iron garnet layer requires annealing at high temperatures, the fabrication process can be rather challenging. Special approaches for the protection of metal layers against oxidation and morphological changes along with a special plasma-assisted polishing of the iron garnet layer surface were used to achieve a 10-fold enhancement of the Faraday rotation angle (up to 10.8°=μm) within a special resonance peak of 12 nm (FWHM) linewidth at a wavelength of 772 nm, in …


The Ph Sensing Properties Of Rf Sputtered Ruo2 Thin-Film Prepared Using Different Ar/O2 Flow Ratio, Ali Sardarinejad, Devendra Kumar Maurya, Kamal Alameh Jan 2015

The Ph Sensing Properties Of Rf Sputtered Ruo2 Thin-Film Prepared Using Different Ar/O2 Flow Ratio, Ali Sardarinejad, Devendra Kumar Maurya, Kamal Alameh

Research outputs 2014 to 2021

The influence of the Ar/O2 gas ratio during radio frequency (RF) sputtering of the RuO2 sensing electrode on the pH sensing performance is investigated. The developed pH sensor consists in an RF sputtered ruthenium oxide thin-film sensing electrode, in conjunction with an electroplated Ag/AgCl reference electrode. The performance and characterization of the developed pH sensors in terms of sensitivity, response time, stability, reversibility, and hysteresis are investigated. Experimental results show that the pH sensor exhibits super-Nernstian slopes in the range of 64.33-73.83 mV/pH for Ar/O2 gas ratio between 10/0-7/3. In particular, the best pH sensing performance, in …


Identifying Smart Conducting Materials For Wi-Fi Electromagnetic Interference Shielding, Wham Al-Shabib, Daryoush Habibi, Zonghan Xie, Xiaoli Zhao Jan 2012

Identifying Smart Conducting Materials For Wi-Fi Electromagnetic Interference Shielding, Wham Al-Shabib, Daryoush Habibi, Zonghan Xie, Xiaoli Zhao

Research outputs 2012

The objective of this paper is to identify a suitable coating material in order to tune the microwave radiation and produce absorption losses for Wi-Fi devices. It is also desirable to obtain high absorption losses outside the Wi-Fi microwave frequency range of 2.4 GHz. Literature reviews of several types of material are described and compared for the use of the selected material in order to coat a Wi-Fi device for the desired absorption losses for that device. The selected material for the Wi-Fi device is usually a metal material or a combination of metals like Aluminium in polymer matrix with …