Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Enhancing Wettability Prediction In The Presence Of Organics For Hydrogen Geo-Storage Through Data-Driven Machine Learning Modeling Of Rock/H2/Brine Systems, Zeeshan Tariq, Muhammad Ali, Nurudeen Yekeen, Auby Baban, Bicheng Yan, Shuyu Sun, Hussein Hoteit Dec 2023

Enhancing Wettability Prediction In The Presence Of Organics For Hydrogen Geo-Storage Through Data-Driven Machine Learning Modeling Of Rock/H2/Brine Systems, Zeeshan Tariq, Muhammad Ali, Nurudeen Yekeen, Auby Baban, Bicheng Yan, Shuyu Sun, Hussein Hoteit

Research outputs 2022 to 2026

The success of geological H2 storage relies significantly on rock–H2–brine interactions and wettability. Experimentally assessing the H2 wettability of storage/caprocks as a function of thermos-physical conditions is arduous because of high H2 reactivity and embrittlement damages. Data-driven machine learning (ML) modeling predictions of rock–H2–brine wettability are less strenuous and more precise. They can be conducted at geo-storage conditions that are impossible or hazardous to attain in the laboratory. Thus, ML models were utilized in this research to accurately model the wettability behavior of a ternary system consisting of H2, rock minerals (quartz and mica), and brine at different operating geological …


Effect Of Methylene Blue On Wetting Characteristics Of Quartz/H2/Brine Systems: Implication For Hydrogen Geological Storage, Fatemah Alhamad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz Nov 2023

Effect Of Methylene Blue On Wetting Characteristics Of Quartz/H2/Brine Systems: Implication For Hydrogen Geological Storage, Fatemah Alhamad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Hydrogen (H2) is considered a promising replacement for fossil fuels due to its enormous potential as an environmentally friendly and sustainable option compared to carbon-based fossil fuels. However, storing the vast quantity of H2 required to satisfy the global energy demand on the earth's surface can be difficult due to its compressibility and volatility. The best option for large-scale storage is underground H2 storage (UHS), which can be retrieved when needed. Rock wettability is vital in UHS because it determines the H2 storage capacity, containment security, and potential withdrawal and injection rates. Organic acid inherent in storage formations could make …


Micro-Scale Wettability Of Carbonate Rocks Via High-Resolution Esem Imaging, Khaloud Al-Naimi, Muhammad Arif, Mahmoud Aboushanab, Dalaver Anjum, Mohammed Al Kobaisi, Md Motiur Rahman, Mohamed Mahmoud, Stefan Iglauer Sep 2023

Micro-Scale Wettability Of Carbonate Rocks Via High-Resolution Esem Imaging, Khaloud Al-Naimi, Muhammad Arif, Mahmoud Aboushanab, Dalaver Anjum, Mohammed Al Kobaisi, Md Motiur Rahman, Mohamed Mahmoud, Stefan Iglauer

Research outputs 2022 to 2026

The wettability of several materials has been traditionally quantified using macro-scale contact angles. However, precise identification of the three-phase contact (TPC) line is often difficult due to the resolution limit of macro-scale setups. Moreover, micro-level surface chemical heterogeneities can have a notable impact on the predicted wetting behavior which limits macro-scale contact angles. Thus, here, we investigate the micro-scale water wettability of condensed micro-droplets on carbonate rock surfaces via a high-resolution Environmental Scanning Electron Microscopy (ESEM). Macro- and micro-scale contact angles were evaluated under three conditions: 1) natural carbonate surfaces, 2) surfaces aged in crude oil, and 3) surfaces aged …


Influence Of Organics And Gas Mixing On Hydrogen/Brine And Methane/Brine Wettability Using Jordanian Oil Shale Rocks: Implications For Hydrogen Geological Storage, Amer Alanazi, Nurudeen Yekeen, Mujahid Ali, Muhammad Ali, Israa S. Abu-Mahfouz, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit Jun 2023

Influence Of Organics And Gas Mixing On Hydrogen/Brine And Methane/Brine Wettability Using Jordanian Oil Shale Rocks: Implications For Hydrogen Geological Storage, Amer Alanazi, Nurudeen Yekeen, Mujahid Ali, Muhammad Ali, Israa S. Abu-Mahfouz, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit

Research outputs 2022 to 2026

The substitution of fossil fuel with clean hydrogen (H2) has been identified as a promising route to achieve net zero carbon emissions by this century. However, enough H2 must be stored underground at an industrial scale to achieve this objective due to the low volumetric energy density of H2. In underground H2 storage, cushion gases, such as methane (CH4), are required to maintain a safe operational formation pressure during the withdrawal or injection of H2. The wetting characteristics of geological formations in the presence of H2, cushion gas, …


A Review Of Hydrogen/Rock/Brine Interaction: Implications For Hydrogen Geo-Storage, Masoud Aslannezhad, Muhammad Ali, Azim Kalantariasl, Mohammad Sayyafzadeh, Zhenjiang You, Stefan Iglauer, Alireza Keshavarz Mar 2023

A Review Of Hydrogen/Rock/Brine Interaction: Implications For Hydrogen Geo-Storage, Masoud Aslannezhad, Muhammad Ali, Azim Kalantariasl, Mohammad Sayyafzadeh, Zhenjiang You, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Hydrogen (H2) is currently considered a clean fuel to decrease anthropogenic greenhouse gas emissions and will play a vital role in climate change mitigation. Nevertheless, one of the primary challenges of achieving a complete H2 economy is the large-scale storage of H2, which is unsafe on the surface because H2 is highly compressible, volatile, and flammable. Hydrogen storage in geological formations could be a potential solution to this problem because of the abundance of such formations and their high storage capacities. Wettability plays a critical role in the displacement of formation water and determines …


Experimental Investigation Of The Interface And Wetting Characteristics Of Rock-H2-Brine Systems For H2 Geological Storage, Mirhasan Hosseini Jan 2023

Experimental Investigation Of The Interface And Wetting Characteristics Of Rock-H2-Brine Systems For H2 Geological Storage, Mirhasan Hosseini

Theses: Doctorates and Masters

The projected rise in demand for hydrogen (H2) production is a response to several factors, including greenhouse gas emissions caused by burning fossil fuels, depletion of fossil fuel reserves, and their uneven distribution around the earth. Thus, increased requirement for large-scale hydrogen storage solutions is anticipated to overcome imbalance between energy demand and supply. Deep underground formations such as salt caverns and porous reservoir rocks (e.g., depleted hydrocarbon reservoirs and deep saline aquifers) are necessary to achieve such volumes in practice. This process is known as underground hydrogen storage (UHS) which is technically very similar to underground natural gas storage. …


Using Magnesium Oxide Nanoparticles In A Magnetic Field To Enhance Oil Production From Oil-Wet Carbonate Reservoirs, F. Amrouche, M. J. Blunt, Stefan Iglauer, M. Short, T. Crosbie, E. Cordero, D. Xu Jan 2023

Using Magnesium Oxide Nanoparticles In A Magnetic Field To Enhance Oil Production From Oil-Wet Carbonate Reservoirs, F. Amrouche, M. J. Blunt, Stefan Iglauer, M. Short, T. Crosbie, E. Cordero, D. Xu

Research outputs 2022 to 2026

Enhanced oil production can maximise yield from depleted reservoirs, and in the face of dwindling global oil reserves can reduce the need for exploratory drilling during the transition away from fossil fuels. A hybrid technique, merging a magnetic field (MF) and magnesium oxide (MgO) nanoparticles (NPs), was investigated as a potential method of enhancing oil production from oil-wet carbonate reservoirs. The impact of this hybrid technique on rock wettability, zeta potential, and interfacial tension was also investigated. Displacement experiments were carried out on oil-wet Austin chalk – a laboratory carbonate rock analogue – using MgO NPs in deionized water (DW) …