Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Influence Of Pressure, Temperature And Organic Surface Concentration On Hydrogen Wettability Of Caprock, Implications For Hydrogen Geo-Storage, Muhammad Ali, Nurudeen Yekeen, Nilanjan Pal, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit Nov 2021

Influence Of Pressure, Temperature And Organic Surface Concentration On Hydrogen Wettability Of Caprock, Implications For Hydrogen Geo-Storage, Muhammad Ali, Nurudeen Yekeen, Nilanjan Pal, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit

Research outputs 2014 to 2021

Hydrogen (H2) as a cleaner fuel has been suggested as a viable method of achieving the de-carbonization objectives and meeting increasing global energy demand. However, successful implementation of a full-scale hydrogen economy requires large-scale hydrogen storage (as hydrogen is highly compressible). A potential solution to this challenge is injecting hydrogen into geologic formations from where it can be withdrawn again at later stages for utilization purposes. The geo-storage capacity of a porous formation is a function of its wetting characteristics, which strongly influence residual saturations, fluid flow, rate of injection, rate of withdrawal, and containment security. However, literature …


Co2-Wettability Reversal Of Cap-Rock By Alumina Nanofluid: Implications For Co2 Geo-Storage, Muhammad Ali, Adnan Aftab, Faisal Ur Rahman Awan, Hamed Akhondzadeh, Alireza Keshavarz, Ali Saeedi, Stefan Iglauer, Mohammad Sarmadivaleh Apr 2021

Co2-Wettability Reversal Of Cap-Rock By Alumina Nanofluid: Implications For Co2 Geo-Storage, Muhammad Ali, Adnan Aftab, Faisal Ur Rahman Awan, Hamed Akhondzadeh, Alireza Keshavarz, Ali Saeedi, Stefan Iglauer, Mohammad Sarmadivaleh

Research outputs 2014 to 2021

© 2021 Elsevier B.V. The usage of nanofluids is vast in different applications of nano-energy. These minute nanoparticles can be used to alter the hydrophobicity into hydrophilicity for CO2-brine-mineral systems in the presence of organic acids. Nonetheless, the literature lacks the information for the behavior of nanoparticles and its associated concentrations in the presence of organic acids at the reservoir (high temperature and high pressure) conditions. In this study, we have investigated that how different alkyl chain organic acids impact the wettability of mica muscovite for different ageing times (7 days and one year) and how this impact can be …


Effect Of Humic Acid On Co2-Wettability In Sandstone Formation, Mujahid Ali, Faisal Ur Rahman Awan, Muhammad Ali, Ahmed Al-Yaseri, Muhammad Arif, Mónica Sánchez-Román, Alireza Keshavarz, Stefan Iglauer Apr 2021

Effect Of Humic Acid On Co2-Wettability In Sandstone Formation, Mujahid Ali, Faisal Ur Rahman Awan, Muhammad Ali, Ahmed Al-Yaseri, Muhammad Arif, Mónica Sánchez-Román, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

© 2020 Elsevier Inc. Hypothesis: Millions of tons of CO2 are stored in CO2 geological storage (CGS) formations (depleted oil reservoirs and deep saline aquifers) every year. These CGS formations naturally contain small concentrations of water-soluble organic components in particular humic acid (HA), which may drastically affect the rock wettability - a significant factor determining storage capacities and containment security. Hence, it is essential to characterise the effect of humic acid concentration on CO2-wettability and its associated impact on storage capacity. Experimental: To achieve this, we measured advancing and receding contact angles at reservoir conditions using the pendant drop tilted …


Effect Of Co2 Flooding On The Wettability Evolution Of Sand-Stone, Cut Aja Fauziah, Ahmed Al-Yaseri, Emad Al-Khdheeawi, Nilesh Kumar Jha, Hussein R. Abid, Stefan Iglauer, Christopher Lagat, Ahmed Barifcani Jan 2021

Effect Of Co2 Flooding On The Wettability Evolution Of Sand-Stone, Cut Aja Fauziah, Ahmed Al-Yaseri, Emad Al-Khdheeawi, Nilesh Kumar Jha, Hussein R. Abid, Stefan Iglauer, Christopher Lagat, Ahmed Barifcani

Research outputs 2014 to 2021

Wettability is one of the main parameters controlling CO2 injectivity and the movement of CO2 plume during geological CO2 sequestration. Despite significant research efforts, there is still a high uncertainty associated with the wettability of CO2/brine/rock systems and how they evolve with CO2 exposure. This study, therefore, aims to measure the contact angle of sandstone samples with varying clay content before and after laboratory core flooding at different reservoir pressures, of 10 MPa and 15 MPa, and a temperature of 323 K. The samples’ microstructural changes are also assessed to investigate any potential alteration …


Shale Adhesion Force Measurements Via Atomic Force Microscopy, Nikolai Mitiurev, Michael Verrall, Svetlana Shilobreeva, Alireza Keshavarz, Stefan Iglauer Jan 2021

Shale Adhesion Force Measurements Via Atomic Force Microscopy, Nikolai Mitiurev, Michael Verrall, Svetlana Shilobreeva, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

Wettability of sedimentary rock surface is an essential parameter that defines oil recovery and production rates of a reservoir. The discovery of wettability alteration in reservoirs, as well as complications that occur in analysis of heterogeneous sample, such as shale, for instance, have prompted scientists to look for the methods of wettability assessment at nanoscale. At the same time, bulk techniques, which are commonly applied, such as USBM (United States Bureau of Mines) or Amott tests, are not sensitive enough in cases with mixed wettability of rocks as they provide average wettability values of a core plug. Atomic Force Microscopy …


Co2 – Brine – Sandstone Wettability Evaluation At Reservoir Conditions Via Nuclear Magnetic Resonance Measurements, Auby Baban, Ahmed Al-Yaseri, Alireza Keshavarz, R. Amin, Stefan Iglauer Jan 2021

Co2 – Brine – Sandstone Wettability Evaluation At Reservoir Conditions Via Nuclear Magnetic Resonance Measurements, Auby Baban, Ahmed Al-Yaseri, Alireza Keshavarz, R. Amin, Stefan Iglauer

Research outputs 2014 to 2021

CO2-rock wettability is a key parameter which governs CO2 trapping capacities and containment security in the context of CO2 geo-sequestration schemes. However, significant uncertainties still exist in terms of predicting CO2 rock wettability at true reservoir conditions. This study thus reports on wettability measurements via independent Nuclear Magnetic Resonance (NMR) experiments on sandstone (CO2–brine systems) to quantify Wettability Indices (WI) using the United States Bureau of Mines (USBM) scale. The results show that CO2 (either molecularly dissolved or as a separate supercritical phase) significantly reduced the hydrophilicity of the sandstone from strongly …


Improving Basalt Wettability To De-Risk Co2 Geo-Storage In Basaltic Formations, Stefan Iglauer, Ahmed Al-Yaseri Jan 2021

Improving Basalt Wettability To De-Risk Co2 Geo-Storage In Basaltic Formations, Stefan Iglauer, Ahmed Al-Yaseri

Research outputs 2014 to 2021

CO2 geo-storage in basaltic formations has recently been identified as a viable option to rapidly dispose large quantities of CO2, hence mitigating anthropogenic CO2 emissions. However, it has been shown that basalt is weakly water-wet or intermediate-wet at typical storage conditions, which reduces capillary trapping capacities and increases lateral and vertical spreading of the CO2 plume; and these effects increase project risk. We thus propose here to prime basalt surfaces with anionic surfactant (here we used sodium dodecyl benzene sulfonate), and demonstrate that such priming is highly efficient, and renders the basalt completely water-wet even …