Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Morphology Of Mos2 Nanosheets And Its Influence On Water/Oil Interfacial Tension: A Molecular Dynamics Study, Yang Feng, Jirui Hou, Yulong Yang, Shuting Wang, Dongsen Wang, Tingting Cheng, Zhenjiang You Mar 2022

Morphology Of Mos2 Nanosheets And Its Influence On Water/Oil Interfacial Tension: A Molecular Dynamics Study, Yang Feng, Jirui Hou, Yulong Yang, Shuting Wang, Dongsen Wang, Tingting Cheng, Zhenjiang You

Research outputs 2022 to 2026

Plate-shaped nanoparticles exhibit huge potential for a broad range of cutting-edge applications in interfacial-based science and technology, such as enhanced oil recovery in hydrocarbon reservoirs, owing to their remarkable features in superior affinity toward interfaces. Understanding the adsorption behavior of nanosheets (NSs) self-assembled at the water/oil interface (W/O interface) is crucial to elucidate the variation of interfacial tension (IFT) and establish special design criteria for efficient industrial use of NSs. Here we present a molecular dynamics study to reveal the morphology of carbon-chain modified molybdenum disulfide (MoS2) nanosheets. The stress exerted on a nanosheet is analyzed. The simulation …


Analysis Of Individual Molecular Dynamics Snapshots Simulating Wetting Of Surfaces Using Spheroidal Geometric Constructions, Aleksandr Abramov, Stefan Iglauer Aug 2019

Analysis Of Individual Molecular Dynamics Snapshots Simulating Wetting Of Surfaces Using Spheroidal Geometric Constructions, Aleksandr Abramov, Stefan Iglauer

Research outputs 2014 to 2021

Accurate characterization of wettability of minerals is important for efficient oil recovery and carbon geosequestration. In studies where molecular dynamics simulations are used to compute the contact angle, emphasis is often placed on results or theoretical details of the simulations themselves, overlooking potentially applicable methodologies for determination of the contact angle. In this manuscript, a concept of a method utilizing spheroidal geometric constructions to estimate the contact angle of a water droplet on a silica surface in carbon dioxide atmosphere is outlined and applied to the final snapshots of two molecular dynamics simulation runs. Two carbon dioxide pressures and two …


Wettability Of Fully Hydroxylated And Alkylated (001) Α-Quartz Surface In Carbon Dioxide Atmosphere, Aleksandr Abramov, Alireza Keshavarz, Stefan Iglauer Mar 2019

Wettability Of Fully Hydroxylated And Alkylated (001) Α-Quartz Surface In Carbon Dioxide Atmosphere, Aleksandr Abramov, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

Wettability of alkylated quartz surfaces is of primary importance in several technological applications, including the development of oil and gas reservoirs and carbon geo-sequestration. It is intuitively understood and experimentally confirmed that hydroxylated quartz surfaces are hydrophilic. By gradually saturating a hydroxylated (001) α-quartz surface with pentyl groups, we show using molecular dynamics simulations that the surface can also exhibit extreme hydrophobicity. Within a range of surface pentyl group density from 0.29 to 3.18/nm2, the contact angle of a water droplet under 10 MPa pressure of carbon dioxide at 300 K changes from 10–20 to 180°. This study …


Wettability Of Quartz Surfaces Under Carbon Dioxide Geo-Sequestration Conditions. A Theoretical Study, Aleksandr Abramov Jan 2019

Wettability Of Quartz Surfaces Under Carbon Dioxide Geo-Sequestration Conditions. A Theoretical Study, Aleksandr Abramov

Theses: Doctorates and Masters

The wettability of rocks under reservoir conditions is important to ensure and secure long term underground storage of carbon dioxide. The composition of those rocks vary significantly and are influenced by the fact that quartz is the second most abundant mineral in the earth's continental crust. Thus, the CO2 wettability of quartz dominates the overall CO2 trapping performance of storage and cap rocks. If depleted oil or gas reservoirs are used for storage of CO2 quartz surfaces of rocks in reservoirs which have been previously exposed to hydrocarbons might be covered with chemisorpt hydrocarbon molecules. The CO2 wettability of these …