Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Edith Cowan University

PDF

Research outputs 2022 to 2026

Discipline
Keyword
Publication Year

Articles 1 - 30 of 294

Full-Text Articles in Engineering

A Secure Cross-Domain Authentication Scheme Based On Threshold Signature For Mec, Lei Chen, Chong Guo, Bei Gong, Muhammad Waqas, Lihua Deng, Haowen Qin Dec 2024

A Secure Cross-Domain Authentication Scheme Based On Threshold Signature For Mec, Lei Chen, Chong Guo, Bei Gong, Muhammad Waqas, Lihua Deng, Haowen Qin

Research outputs 2022 to 2026

The widespread adoption of fifth-generation mobile networks has spurred the rapid advancement of mobile edge computing (MEC). By decentralizing computing and storage resources to the network edge, MEC significantly enhances real-time data access services and enables efficient processing of large-scale dynamic data on resource-limited devices. However, MEC faces considerable security challenges, particularly in cross-domain service environments, where every device poses a potential security threat. To address this issue, this paper proposes a secure cross-domain authentication scheme based on a threshold signature tailored to MEC’s multi-subdomain nature. The proposed scheme employs a (t,n) threshold mechanism to bolster system resilience and security, …


Corrosion Behavior Of Laser Powder Bed Fusion Additive Manufacturing Produced Tini Alloy By Micro-Arc Oxidation, Xin Zhao, Yicheng Liu, Chenfan Jia, Hao Chang, Wei Zhang, Yun Bai, Shujun Li, Lai-Chang Zhang, Wei Yuan Dec 2024

Corrosion Behavior Of Laser Powder Bed Fusion Additive Manufacturing Produced Tini Alloy By Micro-Arc Oxidation, Xin Zhao, Yicheng Liu, Chenfan Jia, Hao Chang, Wei Zhang, Yun Bai, Shujun Li, Lai-Chang Zhang, Wei Yuan

Research outputs 2022 to 2026

To improve the corrosion resistance of TiNi alloy fabricated by laser powder bed fusion (LPBF), a porous oxidation layer was synthesized by micro-arc oxidation in a sodium aluminate and sodium silicate electrolyte. The influences of the applied voltage and the processing time on the morphology of oxidation layer were investigated, and the corrosion behavior of the oxidation layer in artificial saliva was evaluated and compared with that of the as-fabricated LPBF alloy. The results indicate that, as increasing the applied voltage and the processing time, the oxidation layer becomes uniform and integrated. The optimum parameters are with an applied voltage …


Towards Load-Bearing Biomedical Titanium-Based Alloys: From Essential Requirements To Future Developments, Yu-Wei Cui, Liqiang Wang, Lai-Chang Zhang Aug 2024

Towards Load-Bearing Biomedical Titanium-Based Alloys: From Essential Requirements To Future Developments, Yu-Wei Cui, Liqiang Wang, Lai-Chang Zhang

Research outputs 2022 to 2026

The use of biomedical metallic materials in research and clinical applications has been an important focus and a significant area of interest, primarily owing to their role in enhancing human health and extending human lifespan. This article, particularly on titanium-based alloys, explores exceptional properties that can address bone health issues amid the growing challenges posed by an aging population. Although stainless steel, magnesium-based alloys, cobalt-based alloys, and other metallic materials are commonly employed in medical applications, limitations such as toxic elements, high elastic modulus, and rapid degradation rates limit their widespread biomedical applications. Therefore, titanium-based alloys have emerged as top-performing …


Prediction Of Mechanical And Electrical Properties Of Carbon Fibre-Reinforced Self-Sensing Cementitious Composites, Zehao Kang, Farhad Aslani, Baoguo Han Jul 2024

Prediction Of Mechanical And Electrical Properties Of Carbon Fibre-Reinforced Self-Sensing Cementitious Composites, Zehao Kang, Farhad Aslani, Baoguo Han

Research outputs 2022 to 2026

The transmission of signal values in self-sensing concrete allows us to precisely locate damaged structures and prevent disasters. Currently, there are over ten functional materials used in self-sensing concrete applications. Carbon fibre (CF) is a well-known functional material that has been extensively studied for its reproducibility and accuracy in self-sensing concrete experiments. In contrast, this study is based on finite element modelling to rapidly predict the impact of the functional filler material, CF, on concrete performance. This paper simulates the mechanical and piezoresistive properties of concrete with unsized and desized short-cut CFs at lengths of 3, 6, and 12 mm. …


Rock Structural Changes Monitored By Fibre Bragg Grating Sensors And Nuclear Magnetic Resonance During Static And Dynamic Carbonated Brine Core Flooding Experiments, Bruno Da Silva Falcão, Lionel Esteban, Ausama Giwelli, Ahmed Al-Yaseri, Alireza Keshavarz, Jeremie Dautriat, Stephanie Vialle, Stefan Iglauer Jul 2024

Rock Structural Changes Monitored By Fibre Bragg Grating Sensors And Nuclear Magnetic Resonance During Static And Dynamic Carbonated Brine Core Flooding Experiments, Bruno Da Silva Falcão, Lionel Esteban, Ausama Giwelli, Ahmed Al-Yaseri, Alireza Keshavarz, Jeremie Dautriat, Stephanie Vialle, Stefan Iglauer

Research outputs 2022 to 2026

One proposed solution to reduce greenhouse gas emissions is the capture and storage of carbon dioxide (CCS) in geological formations such as depleted oil and gas reservoirs. Injected carbon dioxide (CO2) forms carbonic acid once dissolved in the formation water, which can lead to dissolution of certain types of rock minerals. This may weaken rock geomechanical properties that can jeopardize the safety of long-term storage. In this work, the use of Fibre Bragg Grating (FBG) sensors associated with Nuclear Magnetic Resonance (NMR) was investigated to measure the change in rock strain during core flooding experiments. Optical fibres were glued onto …


Hydrogen From Food Waste: Energy Potential, Economic Feasibility, And Environmental Impact For Sustainable Valorization, Md Sanowar Hossain, Fairuz Wasima, Md Sharul I. K. Shawon, Barun K. Das, Pronob Das, Sanjay Paul Jun 2024

Hydrogen From Food Waste: Energy Potential, Economic Feasibility, And Environmental Impact For Sustainable Valorization, Md Sanowar Hossain, Fairuz Wasima, Md Sharul I. K. Shawon, Barun K. Das, Pronob Das, Sanjay Paul

Research outputs 2022 to 2026

Globally, inefficient management of municipal solid waste, composed primarily of food waste poses concern for human and environmental well-being. Food waste can be converted into hydrogen gas, which can be utilized to generate power without emitting any harmful pollutants. This solution would also help with the issue of disposing of food waste. The conversion of food waste into hydrogen is a practical energy source with potential financial benefits. This study explores the transformative potential of converting food waste into renewable energy through hydrogen production, focusing on Bangladesh from 2023 to 2042. Notably, the study forecasts a surge in food waste …


Advances In Additively Manufactured Titanium Alloys By Powder Bed Fusion And Directed Energy Deposition: Microstructure, Defects, And Mechanical Behavior, Hongyi Y. Ma, J. C. Wang, Peng Qin, Y. J. Liu, L. Y. Chen, L. Q. Wang, Laichang Zhang Jun 2024

Advances In Additively Manufactured Titanium Alloys By Powder Bed Fusion And Directed Energy Deposition: Microstructure, Defects, And Mechanical Behavior, Hongyi Y. Ma, J. C. Wang, Peng Qin, Y. J. Liu, L. Y. Chen, L. Q. Wang, Laichang Zhang

Research outputs 2022 to 2026

Ti and its alloys have been broadly adopted across various industries owing to their outstanding properties, such as high strength-to-weight ratio, excellent fatigue performance, exceptional corrosion resistance and so on. Additive manufacturing (AM) is a complement to, rather than a replacement for, traditional manufacturing processes. It enhances flexibility in fabricating complex components and resolves machining challenges, resulting in reduced lead times for custom designs. However, owing to distinctions among various AM technologies, Ti alloys fabricated by different AM methods usually present differences in microstructure and defects, which can significantly influence the mechanical performance of built parts. Therefore, having an in-depth …


Understanding The Impact Of Microplastic Contamination On Soil Quality And Eco-Toxicological Risks In Horticulture: A Comprehensive Review, N. P. Gayathri, Geena Prasad, Vaishna Prabhakaran, Vishnu Priya Jun 2024

Understanding The Impact Of Microplastic Contamination On Soil Quality And Eco-Toxicological Risks In Horticulture: A Comprehensive Review, N. P. Gayathri, Geena Prasad, Vaishna Prabhakaran, Vishnu Priya

Research outputs 2022 to 2026

The horticulture sector, essential for global food production, confronts significant challenges with prevalent pollutants, mainly microplastics. The presence of microplastics in the food chain has induced physiological stress and a multifactorial food safety concern. The complexity of the problem, arising from intricate interactions among microplastics, organisms, and ecosystems, poses a substantial challenge to food safety, necessitating an immediate strategic perspective due to the associated risks to human health and eco-toxicology. Significant knowledge gaps persist regarding their impact on terrestrial ecosystems, especially in horticulture. This study addresses the urgent need to comprehend the implications of microplastics on soil health, eco-toxicological risks, …


Recent Innovations In Laser Additive Manufacturing Of Titanium Alloys, Jinlong Su, Fulin Jiang, Jie Teng, Lequn Chen, Ming Yan, Guillermo Requena, Lai-Chang Zhang, Y. Morris Wang, Ilya V. Okulov, Hongmei Zhu, Chaolin Tan Jun 2024

Recent Innovations In Laser Additive Manufacturing Of Titanium Alloys, Jinlong Su, Fulin Jiang, Jie Teng, Lequn Chen, Ming Yan, Guillermo Requena, Lai-Chang Zhang, Y. Morris Wang, Ilya V. Okulov, Hongmei Zhu, Chaolin Tan

Research outputs 2022 to 2026

Titanium (Ti) alloys are widely used in high-tech fields like aerospace and biomedical engineering. Laser additive manufacturing (LAM), as an innovative technology, is the key driver for the development of Ti alloys. Despite the significant advancements in LAM of Ti alloys, there remain challenges that need further research and development efforts. To recap the potential of LAM high-performance Ti alloy, this article systematically reviews LAM Ti alloys with up-to-date information on process, materials, and properties. Several feasible solutions to advance LAM Ti alloys are reviewed, including intelligent process parameters optimization, LAM process innovation with auxiliary fields and novel Ti alloys …


Adsorption-Type Aluminium-Based Direct Lithium Extraction: The Effect Of Heat, Salinity And Lithium Content, Yasaman Boroumand, Amir Razmjou May 2024

Adsorption-Type Aluminium-Based Direct Lithium Extraction: The Effect Of Heat, Salinity And Lithium Content, Yasaman Boroumand, Amir Razmjou

Research outputs 2022 to 2026

Conventional lithium production through solar evaporation is considered a time-consuming procedure, taking a substantial 12 to 18 months with significant environmental impacts such as aquifer depletion and damaging the basin's complex hydrological system. Direct Lithium Extraction (DLE) has emerged as a promising alternative for lithium extraction from brines, offering reduced environmental impact. Although adsorption-type DLE with aluminium-based adsorbents is the sole commercial technology of DLE, a debate persists concerning its Technology Readiness Level (TRL), which challenges the prevailing notion that adsorption-type DLE undeniably reaches a TRL of 9. Within this narrative, we propose that adsorption is capable of attaining its …


Advective And Diffusive Gas Phase Transport In Vadose Zones: Importance For Defining Vapour Risks And Natural Source Zone Depletion Of Petroleum Hydrocarbons, Kaveh Sookhak Lari, Greg B. Davis, John L. Rayner, Trevor P. Bastow May 2024

Advective And Diffusive Gas Phase Transport In Vadose Zones: Importance For Defining Vapour Risks And Natural Source Zone Depletion Of Petroleum Hydrocarbons, Kaveh Sookhak Lari, Greg B. Davis, John L. Rayner, Trevor P. Bastow

Research outputs 2022 to 2026

Quantifying the interlinked behaviour of the soil microbiome, fluid flow, multi-component transport and partitioning, and biodegradation is key to characterising vapour risks and natural source zone depletion (NSZD) of light non-aqueous phase liquid (LNAPL) petroleum hydrocarbons. Critical to vapour transport and NSZD is transport of gases through the vadose zone (oxygen from the atmosphere, volatile organic compounds (VOCs), methane and carbon dioxide from the zone of LNAPL biodegradation). Volatilisation of VOCs from LNAPL, aerobic biodegradation, methanogenesis and heat production all generate gas pressure changes that may lead to enhanced gas fluxes apart from diffusion. Despite the importance of the gaseous …


Enhanced Phosphogypsum Thermal Reduction By Carbon In Presence Of Sodium Chloride At High Temperature, Li Chao, An Xuebin, Jing Hu, Yixiao Wang, Shizhao Wang, Yunshan Wang, Gang Yang, Yong Sun May 2024

Enhanced Phosphogypsum Thermal Reduction By Carbon In Presence Of Sodium Chloride At High Temperature, Li Chao, An Xuebin, Jing Hu, Yixiao Wang, Shizhao Wang, Yunshan Wang, Gang Yang, Yong Sun

Research outputs 2022 to 2026

This paper reports an enhanced approach of thermal reduction of phosphogypsum (PG) in the presence of sodium chloride (NaCl) in its molten phase. The thermodynamic together with in-situ thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) result indicates the yield of CaS (solid) at the investigated temperature range (800–850 °C). Addition of NaCl not only appreciably reduces the activation energy of this reaction (800–850 °C) on average from 315 to 175 (kJ·mol−1) materially, but also significantly improve the conversion from CaSO4 to CaS. Additionally, the NaCl based waste salt (NaCl-WS) containing organic compounds (0.21 wt%) was found to produce similar results when compared …


Biomimetic And Bio-Derived Composite Phase Change Materials For Thermal Energy Storage Applications: A Thorough Analysis And Future Research Directions, Md Shahriar Mohtasim, Barun K. Das Apr 2024

Biomimetic And Bio-Derived Composite Phase Change Materials For Thermal Energy Storage Applications: A Thorough Analysis And Future Research Directions, Md Shahriar Mohtasim, Barun K. Das

Research outputs 2022 to 2026

Phase change heat storage has gained a lot of interest lately due to its high energy storage density. However, during the phase shift process, Phase Change Materials (PCMs) experience issues such as low thermal conductivity, stability, leaking, and low energy-storing capacity. Materials that mimic or derive from nature can effectively offset the shortcomings attributed. This work presents a methodical overview of the synthesis, thermo-physical properties, comparison and Thermal Energy Storage (TES) applications of bio-derived and biomimetic composite PCMs (BD/BM-CPCMs). Several studies have observed increase in thermal conductivity up to 950–1250 % for BD/BM-CPCMs, as well as great thermal stability with …


Microplastics Fouling Mitigation In Forward Osmosis Membranes By The Molecular Assembly Of Sulfobetaine Zwitterion, Javad Farahbakhsh, Mitra Golgoli, Mehdi Khiadani, Amir Razmjou, Masoumeh Zargar Apr 2024

Microplastics Fouling Mitigation In Forward Osmosis Membranes By The Molecular Assembly Of Sulfobetaine Zwitterion, Javad Farahbakhsh, Mitra Golgoli, Mehdi Khiadani, Amir Razmjou, Masoumeh Zargar

Research outputs 2022 to 2026

Forward osmosis (FO) membranes have potential for the efficient water and wastewater treatment applications. However, their development has faced significant challenges due to their fouling propensity. In this study, FO membranes modified with sulfobetaine zwitterions (i.e., [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide) were fabricated and used for the first time to address microplastic (MP) fouling issue. Water flux, reverse salt flux (RSF), fouling, and flux recovery were evaluated for the membranes loaded with different quantities of the zwitterions ranging from 0.25 % to 2 %. The developed membranes were tested over 49 h with feed solutions containing polyethylene MPs and bovine serum albumin …


Corrosion And Passivation Behavior Of Laser Powder Bed Fusion Produced Ti-6al-4v Under Various Prior Plastic Deformation Strains, P. Qin, L. Y. Chen, Y. J. Liu, S. X. Liang, H. Sun, L. C. Zhang Apr 2024

Corrosion And Passivation Behavior Of Laser Powder Bed Fusion Produced Ti-6al-4v Under Various Prior Plastic Deformation Strains, P. Qin, L. Y. Chen, Y. J. Liu, S. X. Liang, H. Sun, L. C. Zhang

Research outputs 2022 to 2026

This work investigated the corrosion behavior of LPBF-produced Ti-6Al-4V under varying compression strains in a 3.5 wt% NaCl solution. It identifies that increasing compression strain causes significant alterations in the acicular a'-Ti phase (coarsening, breakage, and further coarsening). Corrosion resistance decreases with higher strains due to deformed a'-Ti phases, leading to increased film growth kinetics (from 0.09× 10−10 cm2/s increase to 12.75 × 10−10 cm2/s). Samples under higher strains (e.g., 32%) exhibit fluctuations in corrosion behavior due to initiated cracks and subsequent crevice corrosion. These findings are vital for understanding LPBF-produced Ti-6Al-4V in applications requiring mechanical strength and corrosion resilience.


Performance Enhancement Of A Solar-Driven Dcmd System Using An Air-Cooled Condenser And Oil: Experimental And Machine Learning Investigations, Pooria Behnam, Abdellah Shafieian, Masoumeh Zargar, Mehdi Khiadani Apr 2024

Performance Enhancement Of A Solar-Driven Dcmd System Using An Air-Cooled Condenser And Oil: Experimental And Machine Learning Investigations, Pooria Behnam, Abdellah Shafieian, Masoumeh Zargar, Mehdi Khiadani

Research outputs 2022 to 2026

Solar-driven direct contact membrane distillation systems (DCMD) are disadvantaged by low freshwater productivity and low gain-output-ratio (GOR). Consequently, this study aims to achieve two primary objectives: i) improving the solar DCMD performance, and ii) harnessing machine learning models for precise and straightforward modeling of the solar DCMD system. To achieve these goals, a novel solar DCMD system powered with oil-filled heat pipe evacuated tube collectors (HP-ETCs) and equipped with an air-cooled condenser was used for the first time. The system was evaluated under eight different scenarios covering both its energy and economic performances. The performance prediction of three different machine …


Adsorbents From Rice Husk And Shrimp Shell For Effective Removal Of Heavy Metals And Reactive Dyes In Water, Md Ibrahim H. Mondal, Shovra C. Chakraborty, Md Saifur Rahman, Shaik M. H. Marjuban, Firoz Ahmed, John L. Zhou, Mohammad B. Ahmed, Masoumeh Zargar Apr 2024

Adsorbents From Rice Husk And Shrimp Shell For Effective Removal Of Heavy Metals And Reactive Dyes In Water, Md Ibrahim H. Mondal, Shovra C. Chakraborty, Md Saifur Rahman, Shaik M. H. Marjuban, Firoz Ahmed, John L. Zhou, Mohammad B. Ahmed, Masoumeh Zargar

Research outputs 2022 to 2026

Widespread contamination by heavy metals (HMs) and dyes poses a major health risk to people and ecosystems requiring effective treatment. In this work, rice husk (RH) and shrimp shells were extracted to obtain amorphous silica and chitosan, respectively, which were utilized to produce nano-chitosan-coated silica (NCCS). To ensure the stability of the nanoparticles, silica was freeze-dried after being coated with nano-chitosan. Functional groups (–NH2, –OH, P]O) from chitosan nanoparticles (CNPs) were introduced to the surface of silica during this process. Dyes such as brilliant green (BG), methylene blue (MB) and reactive brown (RB) as well as HMs (Cr6+, Pb2+, Cd2+, …


Experimental Investigation Of Varying Design Parameters On The Production Rate And Temperature Polarisation Of A Dcmd System, Hiras A. Hijaz, Masoumeh Zargar, Abdellah Shafieian, Amir Razmjou, Mehdi Khiadani Apr 2024

Experimental Investigation Of Varying Design Parameters On The Production Rate And Temperature Polarisation Of A Dcmd System, Hiras A. Hijaz, Masoumeh Zargar, Abdellah Shafieian, Amir Razmjou, Mehdi Khiadani

Research outputs 2022 to 2026

Much of the research in the analysis of Temperature polarisation (TP) and the productivity of a membrane distillation (MD) system tends to concentrate on operational conditions. However, substantial enhancements in permeate flux can be realised through the incorporation of fundamental design modifications. This research showed that TP can be successfully mitigated almost to a level of non-existence, by manipulating the module orientation and flow channel height of an in-house designed direct contact membrane distillation (DCMD) system. Notably, at higher flow channel heights, changing the module orientation from the default horizontal position with the feed side on top (FST) to a …


Influence Of Side Dilution Jets On Swirling And Non-Swirling Pulverised Biomass Turbulent Annular Flows, Syed E. Gillani, Yasir M. Al-Abdeli, Zhao F. Tian Apr 2024

Influence Of Side Dilution Jets On Swirling And Non-Swirling Pulverised Biomass Turbulent Annular Flows, Syed E. Gillani, Yasir M. Al-Abdeli, Zhao F. Tian

Research outputs 2022 to 2026

The use of pulverised biomass in non-premixed combustion systems, featuring turbulent annular flows (swirling, non-swirling) with downstream air dilution jets, is of immense practical importance. The overall combustion performance and emissions heavily rely on the underlying flow dynamics, turbulence and dispersion behaviour of the pulverised biomass particles. Despite the practical significance of side dilution jets in aiding complete combustion and controlling pollutants, the fundamental understanding of side dilution jets influence on the biomass particle velocity field, turbulence, and dispersion characteristics is still lacking. However, the presence of a multi-phase (solid-gas) flow field, highly turbulent annular flows, swirl, and cross-wise turbulent …


Parametric Analysis Of Co2 Hydrogenation Via Fischer-Tropsch Synthesis: A Review Based On Machine Learning For Quantitative Assessment, Jing Hu, Yixao Wang, Xiyue Zhang, Yunshan Wang, Gang Yang, Lufang Shi, Yong Sun Mar 2024

Parametric Analysis Of Co2 Hydrogenation Via Fischer-Tropsch Synthesis: A Review Based On Machine Learning For Quantitative Assessment, Jing Hu, Yixao Wang, Xiyue Zhang, Yunshan Wang, Gang Yang, Lufang Shi, Yong Sun

Research outputs 2022 to 2026

This review focuses on the parametric impacts upon conversion and selectivity during CO2 hydrogenation via Fischer-Tropsch (FT) synthesis using iron-based catalyst to provide quantitative evaluation. Using all collected data from reported literatures as training dataset via artificial neural networks (ANNs) in TensorFlow, three categorized parameters (namely: operational, catalyst informatic and mass transfer) were deployed to assess their impacts upon conversions (CO2) and selectivity. The lump kinetic power expressions among literature reports were compared, and the best fit model is the one that was proposed by this work without arbitrarily assuming power values of individual partial pressure (CO and H2). More …


Erosion Wear Characterisation Of An Open Ductile Iron Butterfly Valve Subjected To Aluminium Oxide Particle Slurry Flow, Prashan Perera, Kevin Hayward, Ferdinando Guzzomi, Ana Vafadar Mar 2024

Erosion Wear Characterisation Of An Open Ductile Iron Butterfly Valve Subjected To Aluminium Oxide Particle Slurry Flow, Prashan Perera, Kevin Hayward, Ferdinando Guzzomi, Ana Vafadar

Research outputs 2022 to 2026

This study attempts to identify the most erosion-sensitive valve locations due to aluminium oxide particle impingement under various pressure drops and valve closing angles, utilising the Ansys discrete phase model (DPM). Additionally, this research explores the feasibility of integrating laser scanning technology into the fields of tribology and particle erosion analysis. The results indicate higher erosion damage on the top valve surface due to the direct effects of particle velocity and impingement angles compared to the underside of the valve, where particle trajectories are highly affected by turbulence. Moreover, smaller closing angles proved to be detrimental to valve service life, …


Lateral Load Response Of Semi-Interlocking Mortarless Masonry-Infilled Frames, Sonam Dorji, Hossein Derakhshan, David P. Thambiratnam, Alireza Mohyeddin Mar 2024

Lateral Load Response Of Semi-Interlocking Mortarless Masonry-Infilled Frames, Sonam Dorji, Hossein Derakhshan, David P. Thambiratnam, Alireza Mohyeddin

Research outputs 2022 to 2026

Structural frames infilled with masonry material called masonry-infilled frames (MIFs) are common types of constructions around the world. These structures generally have mortared masonry as infill material which made the buildings stiff during past earthquakes and generated additional torsional forces. With a view to improve the seismic performance of MIFs this paper presents the results of a numerical simulation study on the behaviour of previously-tested MIFs with semi-interlocking masonry (SIM) material. In a simplified micro-modelling approach, the concrete and masonry materials are simulated using Concrete Damaged Plasticity technique and the joints are considered as zero-thickness cohesive interfaces modelled using traction-separation …


Wave Overtopping Layer Thickness On The Crest Of Rubble Mound Seawalls, Ali Koosheh, Amir Etemad-Shahidi, Nick Cartwright, Rodger Tomlinson, Marcel R. A. Van Gent Mar 2024

Wave Overtopping Layer Thickness On The Crest Of Rubble Mound Seawalls, Ali Koosheh, Amir Etemad-Shahidi, Nick Cartwright, Rodger Tomlinson, Marcel R. A. Van Gent

Research outputs 2022 to 2026

During storms, ensuring the protection of people, vehicles and infrastructure on the crest of coastal structures from wave overtopping hazards is crucial. The thickness of the wave overtopping layer is a key variable used for assessing safety and maintaining a secure design. Traditionally, this parameter is associated with the height difference between the fictitious wave run-up level exceeded by 2% of waves and the crest freeboard of coastal structures. This study aims to investigate the wave overtopping layer thickness on the crest of rubble mound seawalls. To achieve this, a series of 125 small-scale 2D physical model tests were conducted …


Permeability Enhancement And Coal Fines Removal Through Oxidation Treatment In Coalbed Methane Reservoirs, Yu Lu, Yili Kang, Chengzhong Bu, Ying Li, Chong Lin, Zhenjiang You Feb 2024

Permeability Enhancement And Coal Fines Removal Through Oxidation Treatment In Coalbed Methane Reservoirs, Yu Lu, Yili Kang, Chengzhong Bu, Ying Li, Chong Lin, Zhenjiang You

Research outputs 2022 to 2026

This study utilized anthracite coal samples from Zhijin Block and applied NaClO as the oxidant to investigate the effects of oxidation treatment on permeability enhancement and coal fines migration. Subsequent to oxidation treatment, the coal samples demonstrated an average increase of 42.17% in the equivalent hydraulic aperture (EHA). This treatment also resulted in the expansion of fluid flow channels, contributing to an average permeability enhancement of 108.85% in the coal samples. Resulting from the non-uniform dissolution of the oxidant on the fracture surface of coal, self-propping fractures were formed, effectively maintaining the conductivity of fractures. The oxidation treatment converted the …


An Innovative Fracture Plugging Evaluation Method For Drill-In Fluid Loss Control And Formation Damage Prevention In Deep Fractured Tight Reservoirs, Chengyuan Xu, Lei Liu, Yang Yang, Yili Kang, Zhenjiang You Feb 2024

An Innovative Fracture Plugging Evaluation Method For Drill-In Fluid Loss Control And Formation Damage Prevention In Deep Fractured Tight Reservoirs, Chengyuan Xu, Lei Liu, Yang Yang, Yili Kang, Zhenjiang You

Research outputs 2022 to 2026

Lost circulation, resulting from the undesired loss of drilling fluid into formation fractures, stands as a significant technical obstacle in the exploration and production of oil, gas, and geothermal reservoirs. Effective mitigation of this challenge requires the development and application of robust experimental evaluation methods to assess the effectiveness of fracture plugging. The traditional approach to fracture plugging evaluation relies on a uniform evaluation index and experimental parameters for various lost circulation types. Unfortunately, this practice frequently results in inconsistent performance of loss control formulas during laboratory experiments and field tests. To address this issue, this paper introduces an innovative …


Numerical Investigation Of The Thermo-Hydraulic Performance Of A Shark Denticle-Inspired Plate Fin Heat Exchanger, Aakash S. Hurry, Ana Vafadar, Kevin Hayward, Ferdinando Guzzomi, Kanishk Rauthan Feb 2024

Numerical Investigation Of The Thermo-Hydraulic Performance Of A Shark Denticle-Inspired Plate Fin Heat Exchanger, Aakash S. Hurry, Ana Vafadar, Kevin Hayward, Ferdinando Guzzomi, Kanishk Rauthan

Research outputs 2022 to 2026

Growing demand for increased power dissipation is fuelling the need for the design of more efficient heat exchangers. Modifying fin geometry is an effective way of improving heat transfer efficiency and of reducing flow resistance for plate fin heat exchangers. To date, fin designs have mostly revolved around classical shapes such as pins, ellipses, and rectangles, due to limitations of conventional manufacturing technologies. However, with recent advancements in metal additive manufacturing, there is an opportunity of redesigning approaches and ways of thinking to create novel fin geometries. In this study, biomimicry was used as a tool to reverse engineer a …


Application Of Foam Assisted Water-Alternating-Gas Flooding And Quantification Of Resistivity And Water Saturation By Experiment And Simulation To Determine Foam Propagation In Sandstone, Javed A. Khan, Jong Kim, Sonny Irawan, Karina A. Permatasar, Patrick G. Verdin, Baoping Cai, Nurudeen Yekeen Feb 2024

Application Of Foam Assisted Water-Alternating-Gas Flooding And Quantification Of Resistivity And Water Saturation By Experiment And Simulation To Determine Foam Propagation In Sandstone, Javed A. Khan, Jong Kim, Sonny Irawan, Karina A. Permatasar, Patrick G. Verdin, Baoping Cai, Nurudeen Yekeen

Research outputs 2022 to 2026

Foam flooding by Foam Assisted Water-Alternating-Gas (FAWAG) is an important enhanced oil recovery method that has proven successful in experimental and pilot studies. The present study is carried out to monitor the movement of the foam front once injected into the porous medium. This study aims to investigate applications of resistivity waves to monitor foam propagation in a sandstone formation. In the present lab-scale experiments and simulations, resistivity measurements were carried out to monitor the progression of foam in a sand pack, and the relationships between foam injection time and resistivity, as well as brine saturation, were studied. The brine …


Advanced Shape Memory Alloy Fibers Designed To Enhance Crack Closure And Re-Centring Performance In Cement-Based Composites, Ayoub Dehghani, Farhad Aslani Feb 2024

Advanced Shape Memory Alloy Fibers Designed To Enhance Crack Closure And Re-Centring Performance In Cement-Based Composites, Ayoub Dehghani, Farhad Aslani

Research outputs 2022 to 2026

Crack-closing and re-centring attributes were observed in cementitious composites utilising segmented pseudoelastic shape memory alloy fibres (S-PSMAFs) developed in this study. S-PSMAFs, produced via laboratory deep drawing, displayed notable strain recovery capacity during detwinning and martensite phases in direct cyclic tensile tests. Cementitious composites incorporating S-PSMAFs at 0.5%, 0.75%, and 1.0% dosages underwent testing in static and cyclic flexure using both unnotched and notched beams. Results were compared with steel fibre (SF) reinforced specimens. Digital image correlation (DIC) provided full-field strain maps and crack propagation data. The cyclic testing allowed assessment of crack-closing and re-centring behaviour at varying deflections post-cracking …


Maximizing Charge Dynamics In Znin2s4/Cn Van Der Waals Heterojunction For Optimal Hydrogen Production From Photoreforming Of Glucose, Jinqiang Zhang, Xinyuan Xu, Lei Shi, Huayang Zhang, Shaobin Wang, Hongqi Sun Feb 2024

Maximizing Charge Dynamics In Znin2s4/Cn Van Der Waals Heterojunction For Optimal Hydrogen Production From Photoreforming Of Glucose, Jinqiang Zhang, Xinyuan Xu, Lei Shi, Huayang Zhang, Shaobin Wang, Hongqi Sun

Research outputs 2022 to 2026

Biomass photoreforming stands out as a promising avenue for green hydrogen, leveraging solar energy for the generation and transformation of clean and renewable energy resources. The pursuit of efficient photocatalysts is motivated by the unsatisfied hydrogen evolution performance arising from the complex and stubborn structure of biomass. Herein, we loaded 2-dimensional (2D) ZnIn2S4 onto 2D carbon nitride nanosheets, resulting in the formation of Van der Waals (VDW) heterojunctions (ZIS/CN). Band structure and morphology of CN were rationally tailored through precursor engineering to effectively magnify interfacial internal electric field and minimize diffusion pathway within the VDW heterostructure, realizing optimal charge dynamics …


Measurements Of The Effective Stress Coefficient For Elastic Moduli Of Sandstone In Quasi-Static Regime Using Semiconductor Strain Gauges, Vassily Mikhaltsevitch, Maxim Lebedev Feb 2024

Measurements Of The Effective Stress Coefficient For Elastic Moduli Of Sandstone In Quasi-Static Regime Using Semiconductor Strain Gauges, Vassily Mikhaltsevitch, Maxim Lebedev

Research outputs 2022 to 2026

Numerous experimental and theoretical studies undertaken to determine the effective stress coefficient for seismic velocities in rocks stem from the importance of this geomechanical parameter both for monitoring changes in rock saturation and pore pressure distribution in connection with reservoir production, and for overpressure prediction in reservoirs and formations from seismic data. The present work pursues a task to determine, in the framework of a low-frequency laboratory study, the dependence of the elastic moduli of n-decane-saturated sandstone on the relationship between pore and confining pressures. The study was conducted on a sandstone sample with high quartz and notable clay content …