Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Clemson University

All Dissertations

Theses/Dissertations

Molecular dynamics

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Hussein Dec 2023

Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Hussein

All Dissertations

Interfaces are ubiquitous in materials systems, and they influence the processing and properties of nearly all engineering and functional materials. Examples include grain boundaries (GBs) in polycrystalline materials, free surfaces in nanoparticles, and phase boundaries in multiphase materials. Therefore, understanding and controlling interfacial processes is a key aspect of materials design and discovery efforts.

Recent developments in advanced manufacturing and synthesis techniques have enabled the fabrication of materials architectures with intricate nanoscale features. Of particular interest is solid-state sintering, known for creating complex and high-precision geometries with controlled microstructures. While sintering science has been the subject of active research, very …


Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Marwan Isa Hussein Dec 2023

Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Marwan Isa Hussein

All Dissertations

Interfaces are ubiquitous in materials systems, and they influence the processing and properties of nearly all engineering and functional materials. Examples include grain boundaries (GBs) in polycrystalline materials, free surfaces in nanoparticles, and phase boundaries in multiphase materials. Therefore, understanding and controlling interfacial processes is a key aspect of materials design and discovery efforts. Recent developments in advanced manufacturing and synthesis techniques have enabled the fabrication of materials architectures with intricate nanoscale features. Of particular interest is solid-state sintering, known for creating complex and high-precision geometries with controlled microstructures. While sintering science has been the subject of active research, very …


Modeling And Synthesis Of Functionalized Meta-Poly(Phenylene Ethynylene) Helical Structures, Ha Nguyen Dec 2011

Modeling And Synthesis Of Functionalized Meta-Poly(Phenylene Ethynylene) Helical Structures, Ha Nguyen

All Dissertations

The ability of meta-poly(phenylene ethynylene) (mPPE) materials to undergo random coil to helix conformational changes under select conditions affords many opportunities for their use in sensor, separation, catalysis, and bio-related applications. Thus, to advance the development of these materials, a modeling procedure based on replica exchange molecular dynamics (REMD) simulation was developed to reliably assess factors affecting the folding behaviors of functionalized mPPE variants in solution. A combinational modeling study of 20 functionalized mPPEs in five solvent conditions provided insight into how mPPE secondary structure is impacted by the complex relationship between mPPE functional groups and solvent moieties. Further, these …


Interfacial Force Field Parameterization Using The Dual Force Field Charmm Program For The Accurate Simulation Of Peptide-Surface Interaction, Nadeem Vellore Dec 2011

Interfacial Force Field Parameterization Using The Dual Force Field Charmm Program For The Accurate Simulation Of Peptide-Surface Interaction, Nadeem Vellore

All Dissertations

Protein adsorption to solid material surfaces is a complex phenomenon and various factors play a role in controlling these processes. Inherent limitations to understand these biological interactions using experimental approaches alone have led to the possibility of exploring these systems using computational molecular simulation methodologies. Before confidence can be placed on these computational protocols, however, rigorous validation of the applicability of these methods to accurately represent protein adsorption processes is needed. In this research, we evaluated the use of all-atom empirical force field (FF) based simulations using the CHARMM simulation program and FF for the study of peptide adsorption processes …