Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Physical Sciences and Mathematics

Barium titanate

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Synthesis And Characterization Of Dielectric And Multiferroic Nanocrystalline Transition Metal Oxide Materials And Nanocomposites, Frederick A. Pearsall May 2019

Synthesis And Characterization Of Dielectric And Multiferroic Nanocrystalline Transition Metal Oxide Materials And Nanocomposites, Frederick A. Pearsall

Dissertations, Theses, and Capstone Projects

Nanocrystalline transition metal oxides with unique chemical, physical, magnetic and dielectric properties have very broad applications, ranging from photocatalysis, capacitor energy storage and 4-state memory. Frequency stable, high permittivity nanocomposite capacitors produced under mild processing conditions offer an attractive replacement to MLCCs derived from conventional ceramic firing. In one project reported herein, 0-3 nanocomposites were prepared using BaTiO3 (barium titanate, BTO) nanocrystals, suspended in a poly(furfuryl alcohol) matrix, resulting in a stable, high effective permittivity, low and stable loss dielectric. Effective medium approximations were used to compare this with similar nanocomposite systems. The use of synthesized BTO nanocrystal photocatalysts …


Property Enhancements Of Dielectric Nanoparticles Via Surface Functionalization, Andrew Byro Feb 2014

Property Enhancements Of Dielectric Nanoparticles Via Surface Functionalization, Andrew Byro

Dissertations, Theses, and Capstone Projects

This thesis describes the surface modification of barium strontium titanate nanoparticles for use in polymer/ceramic composite thin film capacitors with resultant improved dielectric and film-making properties. Phosphonic acid-type ligands proved to be most effective for surface conjugation to the surface of the barium strontium titanate nanoparticles. Amine-terminated ligands proved to be effective at removing surface adsorbed water before being almost entirely removed during the sample washing stage. Carboxylic acid terminated ligands proved to adhere less well to the nanoparticle than the phosphonic acid, but resulted in thin films with a higher dielectric constant, which was more stable in the measured …