Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Brigham Young University

2020

Carbon nanotubes

Articles 1 - 2 of 2

Full-Text Articles in Engineering

3d Interdigitated Vertically Aligned Carbon Nanotube Electrodes For Electrochemical Impedimetric Biosensing, Benjamin J. Brownlee, Jonathan C. Claussen, Brian D. Iverson Sep 2020

3d Interdigitated Vertically Aligned Carbon Nanotube Electrodes For Electrochemical Impedimetric Biosensing, Benjamin J. Brownlee, Jonathan C. Claussen, Brian D. Iverson

Faculty Publications

Advances in nanomaterials, combined with electrochemical impedance spectroscopy (EIS), have allowed electrochemical biosensors to have high sensitivity while remaining labe-lfree, enabling the potential for portable diagnosis at the point-of-care. We report porous, 3D vertically aligned carbon nanotube (VACNT) electrodes with underlying chromium electrical leads for impedance-based biosensing. The electrodes are characterized by electrode height (5, 25, and 80 μm), gap width (15 and 25 μm), and geometry (interdigitated and serpentine) using scanning electron microscopy, cyclic voltammetry, and EIS. The protein streptavidin is functionalized onto VACNT electrodes for detection of biotin, as confirmed by fluorescence microscopy. EIS is used to measure …


Electrochemical Sensors Enhanced By Convection And By 3d Arrays Of Vertically Aligned Carbon Nanotubes, Benjamin James Brownlee Jun 2020

Electrochemical Sensors Enhanced By Convection And By 3d Arrays Of Vertically Aligned Carbon Nanotubes, Benjamin James Brownlee

Theses and Dissertations

Early and accessible diagnostics are important elements to reducing the negative side-effects of untreated disease. One key advancement in diagnostic monitoring is through the development of highly sensitive sensors that have the capability to detect lower concentrations, while still remaining accessible for point-of-care use. This dissertation characterizes electrochemical sensing platforms that are enhanced by convection and by 3D electrodes made from high surface area, vertically aligned carbon nanotubes (VACNTs). Free-standing VACNTs were patterned into microchannel arrays for flow-through amperometric sensing. Convective mass transfer enhancement was shown to improve sensor performance in amperometric sensing through the use of high surface area …