Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

Microelectromechanical systems

2006

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Characterization Of Stress In Gan-On-Sapphire Microelectromechanical Systems (Mems) Structures Using Micro-Raman Spectroscopy, Francisco E. Parada Mar 2006

Characterization Of Stress In Gan-On-Sapphire Microelectromechanical Systems (Mems) Structures Using Micro-Raman Spectroscopy, Francisco E. Parada

Theses and Dissertations

Micro-Raman (µRaman) spectroscopy is an efficient, non-destructive technique widely used to determine the quality of semiconductor materials and microelectromechanical systems. This work characterizes the stress distribution in wurtzite gallium nitride grown on c-plane sapphire substrates by molecular beam epitaxy. This wide bandgap semiconductor material is being considered by the Air Force Research Laboratory for the fabrication of shock-hardened MEMS accelerometers. µRaman spectroscopy is particularly useful for stress characterization because of its ability to measure the spectral shifts in Raman peaks in a material, and correlate those shifts to stress and strain. The spectral peak shift as a function of stress, …


Power-Scavenging Mems Robots, Daniel J. Denninghoff Mar 2006

Power-Scavenging Mems Robots, Daniel J. Denninghoff

Theses and Dissertations

This thesis includes the design, modeling, and testing of novel, power-scavenging, biologically inspired MEMS microrobots. Over one hundred 500-μm and 990-μm microrobots with two, four, and eight wings were designed, fabricated, characterized. These microrobots constitute the smallest documented attempt at powered flight. Each microrobot wing is comprised of downward-deflecting, laser-powered thermal actuators made of gold and polysilicon; the microrobots were fabricated in PolyMUMPs® (Polysilicon Multi-User MEMS Processes). Characterization results of the microrobots illustrate how wing-tip deflection can be maximized by optimizing the gold-topolysilicon ratio as well as the dimensions of the actuator-wings. From these results, an optimum actuator-wing configuration was …