Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Design, Manufacturing, And Testing Of A Small Through-Flow Wave For Use Within The Brayton Cycle, Micahel J. Mcclearn Jun 2016

Design, Manufacturing, And Testing Of A Small Through-Flow Wave For Use Within The Brayton Cycle, Micahel J. Mcclearn

Theses and Dissertations

With the ever growing popularity of drones and other unmanned aerial vehicles for military, commercial, and private usage, there is a desire to improve performance in terms of range, altitude, and flight speed. Current technology uses either electric motors or internal combustion engines: both piston and jet engine types. These sorts of engines undergo significant efficiency degradation as their size decreases. While some efficiency may be recovered via intensive design studies, the cycles are approaching the limit to their operating physics. A possible solution to this is to change the operating physics to something more immune to scaling losses; a …


Unmanned Aerial Vehicle (Uav) Operators’ Workload Reduction: The Effect Of 3d Audio On Operators’ Workload And Performance During Multi-Aircraft Control, Sungbin Kim Mar 2016

Unmanned Aerial Vehicle (Uav) Operators’ Workload Reduction: The Effect Of 3d Audio On Operators’ Workload And Performance During Multi-Aircraft Control, Sungbin Kim

Theses and Dissertations

The importance and number of Unmanned Aerial Vehicle (UAV) operations are rapidly growing in both military and civilian applications. This growth has produced significant manpower issues, producing a desire that multiple aircraft are controlled by a single operator as opposed to the current model where one aircraft may require multiple operators. A potential issue is the need for an operator to monitor radio traffic for the call signs of multi-aircraft. An investigation of the use of 3D sound was undertaken to investigate whether an automatic parser, which preselected the spatial location of relevant versus irrelevant call signs, could aid UAV …


The Efficacy Of Implementing A Small, Low-Cost, Real Time Kinematic Gps System Into A Small Unmanned Aerial System Architecture, Kevin J. Hendricks Mar 2016

The Efficacy Of Implementing A Small, Low-Cost, Real Time Kinematic Gps System Into A Small Unmanned Aerial System Architecture, Kevin J. Hendricks

Theses and Dissertations

Along with the growing uses for small unmanned aerial systems (UAS) within the Department of Defense (DoD), is the utility of small UAS within the civilian market is also increasing. This has led to significant research and development on small UAS subsystems by the commercial market. The focus of this research is characterizing and investigating the application considerations of a small, low-cost real time kinematic (RTK) GPS receiver system. Work was also accomplished to characterize the accuracy and precision of the commonly used GPS receiver subsystem in small UAS to show the increased utility of the RTK GPS system. The …


Characterization Of Quad-Copter Positioning Systems And The Effect Of Pose Uncertainties On Field Probe Measurements, James C. Dossett Mar 2016

Characterization Of Quad-Copter Positioning Systems And The Effect Of Pose Uncertainties On Field Probe Measurements, James C. Dossett

Theses and Dissertations

When measuring the Radar Cross Section (RCS) of a test object, many uncertainties must be accounted for, such as the non-homogeneous nature of the medium between the radar test equipment and the platform under test. There are a variety of other error sources, including clutter and Radio Frequency Interference (RFI), motivating the development of techniques to measure and model the uncertainties in RCS measurements. The following research, in unison with prior and current efforts, intends to reduce the impact of these uncertainties by utilizing a unique two-way field probe in the form of a geodesic sphere encompassing a commercial quad-copter …


Real-Time Implementation Of Vision-Aided Monocular Navigation For Small Fixed-Wing Unmanned Aerial Systems, Timothy I. Machin Mar 2016

Real-Time Implementation Of Vision-Aided Monocular Navigation For Small Fixed-Wing Unmanned Aerial Systems, Timothy I. Machin

Theses and Dissertations

The goal of this project was to develop and implement algorithms to demonstrate real-time positioning of a UAV using a monocular camera combined with previously collected orthorectified imagery. Unlike previous tests, this project did not utilize a full inertial navigation system (INS) for attitude, but instead had to rely on the attitude obtained by inexpensive commercial off-the-shelf (COTS) autopilots. The system consisted of primarily COTS components and open-source software, and was own over Camp Atterbury, IN for a sequence of flight tests in Fall 2015. The system obtained valid solutions over much of the flight path, identifying features in the …


An Openeaagles Framework Extension For Hardware-In-The-Loop Swarm Simulation, Derek B. Worth Mar 2016

An Openeaagles Framework Extension For Hardware-In-The-Loop Swarm Simulation, Derek B. Worth

Theses and Dissertations

Unmanned Aerial Vehicle (UAV) swarm applications, algorithms, and control strategies have experienced steady growth and development over the past 15 years. Yet, to this day, most swarm development efforts have gone untested and thus unimplemented. Cost of aircraft systems, government imposed airspace restrictions, and the lack of adequate modeling and simulation tools are some of the major inhibitors to successful swarm implementation. This thesis examines how the OpenEaagles simulation framework can be extended to bridge this gap. This research aims to utilize Hardware-in-the-Loop (HIL) simulation to provide developers a functional capability to develop and test the behaviors of scalable and …