Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Active Fpga Security Through Decoy Circuits, Bradley D. Christiansen Jun 2006

Active Fpga Security Through Decoy Circuits, Bradley D. Christiansen

Theses and Dissertations

Field Programmable Gate Arrays (FPGAs) based on Static Random Access Memory (SRAM) are vulnerable to tampering attacks such as readback and cloning attacks. Such attacks enable the reverse engineering of the design programmed into an FPGA. To counter such attacks, measures that protect the design with low performance penalties should be employed. This research proposes a method which employs the addition of active decoy circuits to protect SRAM FPGAs from reverse engineering. The effects of the protection method on security, execution time, power consumption, and FPGA resource usage are quantified. The method significantly increases the security of the design with …


Evaluation Of A Field Programmable Gate Array Circuit Reconfiguration System, Jason L. Ives Mar 2006

Evaluation Of A Field Programmable Gate Array Circuit Reconfiguration System, Jason L. Ives

Theses and Dissertations

This research implements a circuit reconfiguration system (CRS) to reconfigure a field programmable gate array (FPGA) in response to a faulty configurable logic block (CLB). It is assumed that the location of the fault is known and the CLB is moved according to one of four replacement methods: column left, column right, row up, and row down. Partial reconfiguration of the FPGA is done through the Joint Test Action Group (JTAG) port to produce the desired logic block movement. The time required to accomplish the reconfiguration is measured for each method in both clear and congested areas of the FPGA. …


Multi-Dimensional Wave Front Sensing Algorithms For Embedded Tracking And Adaptive Optics Applications, Christopher C. Wood Mar 2006

Multi-Dimensional Wave Front Sensing Algorithms For Embedded Tracking And Adaptive Optics Applications, Christopher C. Wood

Theses and Dissertations

Current tracking and adaptive optics techniques cannot compensate for fast-moving extended objects, which is important for ground-based telescopes providing space situational awareness. To fill this need, a vector-projection maximum-likelihood wave-front sensing algorithm development and testing follows for this application. A derivation and simplification of the Cramer-Rao Lower Bound for wavefront sensing using a laser guide star bounds the performance of these systems and guides implementation of a vastly optimized maximum-likelihood search algorithm. A complete analysis of the bias, mean square error, and variance of the algorithm demonstrates exceptional performance of the new sensor. A proof of concept implementation shows feasibility …