Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

Operations Research, Systems Engineering and Industrial Engineering

2020

Renewable energy systems

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Multi-Criteria Logistics Analysis Of Photovoltaic Modules For Remote Applications, Nathan Thomsen [*], Dimitri Papazoglou, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt Jun 2020

A Multi-Criteria Logistics Analysis Of Photovoltaic Modules For Remote Applications, Nathan Thomsen [*], Dimitri Papazoglou, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt

Faculty Publications

Reliable electrical power grids are frequently unavailable or inaccessible in remote locations, including developing nation communities, humanitarian relief camps, isolated construction sites, and military contingency bases. This often requires sites to rely on costly generators and continuous fuel supply. Renewable energy systems (RES) in the form of photovoltaic (PV) arrays and energy storage present a rapidly improving alternative to power these remote locations. Previous RES literature and PV optimization models focused on economics, reliability, and environmental concerns, neglecting the importance of logistics factors in remote installations. This paper proposes additional optimization variables applicable to remote PV systems and compares PV …


Golng Off The Grid: Optimizing Solar Renewable Energy Systems At Remote Locations To Minimize Logistics Requirements, Increase Sustainability, And Strengthen Energy Assurance, Nathanael J. Thomsen Mar 2020

Golng Off The Grid: Optimizing Solar Renewable Energy Systems At Remote Locations To Minimize Logistics Requirements, Increase Sustainability, And Strengthen Energy Assurance, Nathanael J. Thomsen

Theses and Dissertations

Grid-based electrical infrastructure is unavailable at many remote locations including developing nation communities, isolated construction sites, and military contingency bases. Powering these locations with diesel generators requires regular fuel resupply, resulting in increased costs, environmental impacts, and burdensome logistics—making generators an obstacle for energy resiliency and sustainability. This research examines using solar renewable energy systems to replace generators at remote locations and presents a multi-objective optimization model that minimizes logistics variables. Replacing a single deployed generator would save over 500,000 gal of fuel annually, eliminating the need for 100 fuel tanker deliveries.