Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Biomaterials

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 173

Full-Text Articles in Engineering

Effect Of Patient Specific Blood Biomarkers On Nanoparticle - Cell Interactions, Veronica Gabriela Contreras May 2024

Effect Of Patient Specific Blood Biomarkers On Nanoparticle - Cell Interactions, Veronica Gabriela Contreras

Open Access Theses & Dissertations

Nanoparticles are currently known to be a promising material class for bio-applications in drug delivery and vaccine development. Using gold nanoparticles of varied sizes, in this case 45 and 100 nanometers as a model nanomaterial system, we investigated how patients' blood physiology and chemistry (such as solute, protein, lipid levels) affect the biological response to bionanomaterials. When nanoparticles are injected into the body, biomolecules in the blood adsorb to the nanoparticle's surface to form a biomolecular corona that is specific to the patient's unique blood composition. This biomolecular corona is important because it affects the in vivo fate and biodistribution …


Biofabrication Of Human Tissue-On-A-Chip Models Using Engineered Biocompatible Electrospun Scaffolds, Zayra Naomi Dorado May 2024

Biofabrication Of Human Tissue-On-A-Chip Models Using Engineered Biocompatible Electrospun Scaffolds, Zayra Naomi Dorado

Open Access Theses & Dissertations

This study explored the adoption of furfuryl gelatin (F-gelatin) based electrospun scaffolds compared with poly-caprolactone (PCL) as promising biomaterials for tissue engineering applications. Tissue-on-a-chip models, incorporating F-gelatin and PCL electrospun scaffolds, offer promising avenues for healthy and disease-in-vitro tissue models that can be explored to investigate underlying physiological mechanisms involved in disease development. Previous research has demonstrated the cytocompatibility of F-gelatin when used for modifying implant surfaces and tissue repair applications [1]. Our earlier published works have also successfully utilized F-gelatin for in-vitro cardiac tissue engineering [2][3]. We designed F-gelatin and PCL electrospun scaffolds to replicate the native tissue extracellular …


Blow-Spun Hybrid Pcl-Peo/Hnts Scaffolds With Enhanced Biological And Mechanical Properties, Meichen Liu Mar 2024

Blow-Spun Hybrid Pcl-Peo/Hnts Scaffolds With Enhanced Biological And Mechanical Properties, Meichen Liu

Doctoral Dissertations

With the development of technology and engineering, nanotechnology has been a multidisciplinary scientific field applied in nearly all science areas, including medicine, genetics, food industry, robotics. In this respect, nanomedicine has gained increasing attention and been a useful, effective therapy for cancer diagnosis, gene transfer, and drug delivery. To design an ideal nano drug delivery system with controlled drug releasing and improved encapsulated drug’s pharmacokinetic and pharmacodynamic profiles, hydrogels and polymer composites have witnessed increased research interest during the last decades. Recently, numerous polymers have been studied to fabricate the ideal wound dressing with biocompatibility, biodegradability, porous structural, and suitable …


Evaluation Of Polyvinyl Alcohol (Pva) For Electrospinning Utility In The Blood Vessel Mimic (Bvm) Lab, Logan Vandenbroucke Dec 2023

Evaluation Of Polyvinyl Alcohol (Pva) For Electrospinning Utility In The Blood Vessel Mimic (Bvm) Lab, Logan Vandenbroucke

Master's Theses

Electrospinning has provided the opportunity to create extracellular matrix (ECM) mimicking scaffolds for the development of tissue-engineered constructs. Within Professor Kristen Cardinal’s Blood Vessel Mimic (BVM) Lab, at Cal Poly, there exists a constant demand for innovation and the expansion of polymer types and electrospinning capabilities for its BVM model. Along these lines, the BVM Lab has recently acquired two new electrospinning systems: the Spinbox, a commercially graded electrospinning system, and the Learn-By-Doing system, which was part of a recently completed thesis conducted by Jason Provol. Additionally, recently published literature has demonstrated polyvinyl alcohol (PVA) as a viable option for …


Fatigue Behaviour Of Load-Bearing Polymeric Bone Scaffolds: A Review, Hamed Bakhtiari, Alireza Nouri, Mehrdad Khakbiz, Majid Tolouei-Rad Dec 2023

Fatigue Behaviour Of Load-Bearing Polymeric Bone Scaffolds: A Review, Hamed Bakhtiari, Alireza Nouri, Mehrdad Khakbiz, Majid Tolouei-Rad

Research outputs 2022 to 2026

Bone scaffolds play a crucial role in bone tissue engineering by providing mechanical support for the growth of new tissue while enduring static and fatigue loads. Although polymers possess favourable characteristics such as adjustable degradation rate, tissue-compatible stiffness, ease of fabrication, and low toxicity, their relatively low mechanical strength has limited their use in load-bearing applications. While numerous studies have focused on assessing the static strength of polymeric scaffolds, little research has been conducted on their fatigue properties. The current review presents a comprehensive study on the fatigue behaviour of polymeric bone scaffolds. The fatigue failure in polymeric scaffolds is …


Engineering Of Microparticle Encapsulated Antioxidant To Mitigate Oxidative Stress In Vitro And In Vivo, Kayla Ney May 2023

Engineering Of Microparticle Encapsulated Antioxidant To Mitigate Oxidative Stress In Vitro And In Vivo, Kayla Ney

Department of Biological Systems Engineering: Dissertations and Theses

Chronic low back pain (cLBP) is one of the leading causes of years lived with disability in the United States. Current treatments for cLBP have variable results across the patient population, and many patients struggle to find consistent relief. Most current treatments focus on the symptom of pain, not the root cause. In painful degenerated discs, oxidative stress and inflammation function in a vicious cycle and perpetuate degeneration, damage, and pain. Therefore, oxidative stress and inflammation are important targets in addressing the source of pain. This work characterizes an antioxidant, BuOE, encapsulated in a chondroitin sulfate microparticle as a novel …


Turning Dead Leaves Into An Active Multifunctional Material As Evaporator, Photocatalyst, And Bioplastic, Siyuan Fang, Xingyi Lyu, Tian Tong, Aniqa Ibnat Lim, Tao Li, Jiming Bao, Yun Hang Hu Mar 2023

Turning Dead Leaves Into An Active Multifunctional Material As Evaporator, Photocatalyst, And Bioplastic, Siyuan Fang, Xingyi Lyu, Tian Tong, Aniqa Ibnat Lim, Tao Li, Jiming Bao, Yun Hang Hu

Michigan Tech Publications

Large numbers of leaves fall on the earth each autumn. The current treatments of dead leaves mainly involve completely destroying the biocomponents, which causes considerable energy consumption and environmental issues. It remains a challenge to convert waste leaves into useful materials without breaking down their biocomponents. Here, we turn red maple dead leaves into an active three-component multifunctional material by exploiting the role of whewellite biomineral for binding lignin and cellulose. Owing to its intense optical absorption spanning the full solar spectrum and the heterogeneous architecture for effective charge separation, films of this material show high performance in solar water …


Finite Element Analysis Of 3d-Printed Pcl Scaffolds, Ireolu K. Orenuga, Joao Soares, Phillip D. Glass, Daeha Joung Ph.D. Jan 2023

Finite Element Analysis Of 3d-Printed Pcl Scaffolds, Ireolu K. Orenuga, Joao Soares, Phillip D. Glass, Daeha Joung Ph.D.

Undergraduate Research Posters

Finite Element Analysis of 3D-printed PCL Scaffolds for Synergizing Cellular Micro-Environment and Mechanical Stimuli to Enhance Engineered Tissue Growth in Vitro

Ireolu Orenuga,1 Phillip Glass,2 Daeha Joung,2 Joao S. Soares1

  1. Department of Mechanical and Nuclear Engineering, College of Engineering, Virginia Commonwealth University
  2. Department of Physics, College of Humanities & Sciences, Virginia Commonwealth University

Introduction: Tissue engineering aims to create viable and functional engineered tissues via biodegradable scaffolds and autologous cells. Scaffolds play an essential part in organizing the architecture of developing tissues and aid in the proper function of implants acutely by serving as mechanical support and long-term by …


A Cold Plasma-Enabled Reduction Process For The Fabrication Of Metallic Nanostructures Onto Polymeric Biomaterials, Gerardo Hernandez-Moreno Jan 2023

A Cold Plasma-Enabled Reduction Process For The Fabrication Of Metallic Nanostructures Onto Polymeric Biomaterials, Gerardo Hernandez-Moreno

All ETDs from UAB

The design and manufacture of novel materials has served as the bedrock for tissue engineering and regenerative medicine. There exists a need for more biocompatible implantable materials in the biomedical device space. The approach to developing biomaterials fit for biomedical devices has been focused on decreasing overall physiological interaction with the local environment. However, the development of more biomechanically favorable materials has placed an emphasis on designing materials that display biomimetic and biomechanical properties resembling that of the host tissue at the implant site. As biomaterials engineering has progressed, the race to find materials that interact at the nano- and …


Angiogenic Supports For Microvascular Engineering, Zain Siddiqui Dec 2022

Angiogenic Supports For Microvascular Engineering, Zain Siddiqui

Dissertations

Ischemic tissue disease is caused by a lack of circulation / blood supply to tissue. This can be treated by introducing a number of angiogenic (pro-blood vessel forming) factors into the tissue. This work presents strategies for ischemic tissue treatment utilizing a novel proangiogenic self-assembling peptide hydrogel platform. To demonstrate the utility of this platform, its use alone as an angiogenic therapeutic (both alone as a self-assembling hydrogel and with two-component systems), and its ability to vascularize implants is explored. Due to these angiogenic scaffolds demonstrating efficacy to regenerate microvasculature, this work evaluates diseases that can be treated by the …


Chitosan Oligosaccharides As A Nanomaterial Platform: Biological Properties And Applications In The Biomedical And Pharmaceutical Fields, Muhamad Alif Razi Dec 2022

Chitosan Oligosaccharides As A Nanomaterial Platform: Biological Properties And Applications In The Biomedical And Pharmaceutical Fields, Muhamad Alif Razi

Makara Journal of Science

Chitosan oligosaccharides (COS) have been introduced as marine-derived biomaterials with potential health benefits and good water solubility properties. This study presents an overview of the promising nanomaterial platform for biomedical and pharmaceutical applications of COS. The health benefits of COS, primarily their antioxidant and protective effects, anti-inflammatory activity, antidiabetic properties, and cholesterol-lowering effects are discussed. Furthermore, the promising recent articles on specific topics such as drug delivery systems and nanobiomaterials, are highlighted


Engineering 3d Bioprinted Cardiac Spheroidal Droplets With Cardiomyocytes And Cardiac Fibroblasts For Tissue Engineering And Drug Cytotoxicity Studies, Raven El Khoury Dec 2022

Engineering 3d Bioprinted Cardiac Spheroidal Droplets With Cardiomyocytes And Cardiac Fibroblasts For Tissue Engineering And Drug Cytotoxicity Studies, Raven El Khoury

Open Access Theses & Dissertations

Engineering is the supreme human endeavor that involves harnessing the scientific understanding of the natural world to design and invent objects to improve the society around us. Biomedical engineering is the implementation of concepts acquired from engineering in biology and medicine that aims to improve human health through the integration of engineering with biomedical sciences. The mission of a biomedical engineer is to develop technologies that help advance the quality of peopleâ??s health using various tools and materials with one passion and goal: making the patient's life longer and easier. Tissue engineering is developed from the field of biomaterials and …


Enhancing Human Schwann Cells Reparative Behavior Using Heparin/Collagen Layer-By-Layer Coatings, Luis Carlos Pinzon-Herrera Dec 2022

Enhancing Human Schwann Cells Reparative Behavior Using Heparin/Collagen Layer-By-Layer Coatings, Luis Carlos Pinzon-Herrera

Graduate Theses and Dissertations

When a peripheral nerve injury (PNI) occurs, the gold standard for tissue regeneration is the use of autografts. However, due to the secondary effects produced by multiple surgeries involved in the removal and implantation of autografts for very small lesions, it is possible to replace them with the use of Nerve Guide Conduits (NGCs). However, NGCs are limited to short lesions (less than 1 cm). This limitation is caused by the absence of compounds in the extracellular matrix (ECM) that autografts can provide. Since much of the regenerative process takes place on the NGC surface, our work aims to modify …


Effect Of Alloying Elements On The Compressive Mechanical Properties Of Biomedical Titanium Alloys: A Systematic Review, Syed Faraz Jawed, Chirag Dhirajlal Rabadia, Muhammad Ahmed Khan, Saad Jawaid Khan Aug 2022

Effect Of Alloying Elements On The Compressive Mechanical Properties Of Biomedical Titanium Alloys: A Systematic Review, Syed Faraz Jawed, Chirag Dhirajlal Rabadia, Muhammad Ahmed Khan, Saad Jawaid Khan

Research outputs 2022 to 2026

Due to problems such as the stress-shielding effect, strength-ductility trade-off dilemma, and use of rare-earth, expensive elements with high melting points in Ti alloys, the need for the design of new Ti alloys for biomedical applications has emerged. This article reports the effect of various alloying elements on the compressive mechanical performance of Ti alloys for biomedical applications for the first time as a systematic review following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines on this subject. The search strategy in this systematic review used Scopus, Web of Science, and PubMed databases and searched the articles …


The Influence Of Processing And Additives On Cellulose Nanofiber Properties For Orthopedic Application, Mitchell P. Chesley Aug 2022

The Influence Of Processing And Additives On Cellulose Nanofiber Properties For Orthopedic Application, Mitchell P. Chesley

Electronic Theses and Dissertations

Current orthopedics are separated into three different classes of materials, metals, polymers, and ceramics. While these devices have had success throughout the years they are not without their faults. Metallic devices for example are usually extraordinarily stiff when compared with the surrounding bone. This difference in stiffness induces localized stress-shielding promoting cortical atrophy, which can lead to osteoporosis. Polymers while having the capacity of being biodegradable and bioabsorbable also have the potential to incite localized demineralization and weakness in surrounding bone. A result of breakdown byproducts not efficiently being evacuated from the area, which additionally acts as catalysts expediating the …


Effects Of Surface Topography On Macrophages And Bacterial Cells, Joseph Carnicelli Jul 2022

Effects Of Surface Topography On Macrophages And Bacterial Cells, Joseph Carnicelli

Theses - ALL

An association has been found between the texture of breast implants and anaplastic large cell lymphoma, which led to some textured implants to be withdrawn from the market in 2019. There is evidence that these cancers are associated with the harboring of bacteria on the surfaces of the textured implants. It is possible that specific topographic features hinder the removal of attached bacteria by inhibiting macrophage phagocytosis or promoting biofilm formation. Here we examine how bacteria and macrophages interact with recessive surface topographies as analogs to the surfaces seen on textured breast implants. Changes in bacteria morphology were observed among …


Design And Finite Element Analysis Of Patient-Specific Total Temporomandibular Joint Implants, Shirish M. Ingawale, Tarun Goswami Jun 2022

Design And Finite Element Analysis Of Patient-Specific Total Temporomandibular Joint Implants, Shirish M. Ingawale, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

In this manuscript, we discuss our approach to developing novel patient-specific total TMJ prostheses. Our unique patient-fitted designs based on medical images of the patient’s TMJ offer accurate anatomical fit, and better fixation to host bone. Special features of the prostheses have potential to offer improved osseo-integration and durability of the devices. The design process is based on surgeon’s requirements, feedback, and pre-surgical planning to ensure anatomically accurate and clinically viable device design. We use the validated methodology of FE modeling and analysis to evaluate the device design by investigating stress and strain profiles under functional/normal and para-functional/worst-case TMJ loading …


Development Of Brain-Derived Bioscaffolds For Neural Progenitor Cell Culture And Delivery, Julia Terek Jun 2022

Development Of Brain-Derived Bioscaffolds For Neural Progenitor Cell Culture And Delivery, Julia Terek

Electronic Thesis and Dissertation Repository

The use of brain extracellular matrix (ECM) as a biomaterial has the potential to promote neural tissue regeneration by providing cell-instructive cues that direct survival, proliferation, and differentiation. This study developed a novel detergent-free decellularization protocol that effectively reduced cellular content while preserving key ECM components in porcine and rat brains. The resulting decellularized brain tissue (DBT) was incorporated into microcarriers to assess its effects on the growth, phenotype and neurotrophic factor gene expression of rat brain-derived progenitor cells cultured within spinner flask bioreactors, using purified collagen microcarriers as a control. Both types of microcarriers supported cell expansion and survival, …


Antimicrobial Mechanisms Of Biomaterials: From Macro To Nano, Shounak Roy, Sanchita Sarkhel, Deepali Bisht, Samerender Nagam Hanumantharao, Smitha Rao, Amit Jaiswal Jun 2022

Antimicrobial Mechanisms Of Biomaterials: From Macro To Nano, Shounak Roy, Sanchita Sarkhel, Deepali Bisht, Samerender Nagam Hanumantharao, Smitha Rao, Amit Jaiswal

Michigan Tech Publications

Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the development of next-generation antimicrobials. The rapid emergence of multi-drug resistant microbes, superbugs and mutated strains of viruses have fueled the search for new and alternate antimicrobial agents with broad-spectrum biocidal activity. Biomaterials, ranging from macroscopic polymers, proteins, and peptides to nanoscale materials such as nanoparticles, nanotubes and nanosheets have emerged as effective antimicrobials. An extensive body of research has established the antibacterial and antiviral efficiencies of different types of biomaterials. …


A Comparative Study On The Functionality Of Porcine Dura As A Tissue-Engineered Dura Mater Graft For Clinical Applications, Ashma Sharma May 2022

A Comparative Study On The Functionality Of Porcine Dura As A Tissue-Engineered Dura Mater Graft For Clinical Applications, Ashma Sharma

Theses and Dissertations

Damage to dura mater may occur during intracranial or spinal surgeries, which can result in cerebrospinal fluid leakage as well as other potentially fatal physiological changes. As a result, biological scaffolds derived from xenogeneic materials are typically used to repair and regenerate dura mater post intracranial or spinal surgeries. In this study we explore the mechanics, structure, and immunological capacity of xenogeneic dura mater to be considered as a replacement for human dura. A comparative analysis is done between native porcine dura and a commercially available bovine collagen-based dura graft. Native porcine dura mater was decellularized and subjected to mechanical …


Tunable Blood Shunt For Neonates With Complex Congenital Heart Defects, Ellen Garver, Christopher B. Rodell, Kristen Shema, Krianthan Govender, Samantha E. Cassel, Bryan Ferrick, Gabriella Kupsho, Ethan Kung, Kara L. Spiller, Randy Stevens, Amy L. Throckmorton Jan 2022

Tunable Blood Shunt For Neonates With Complex Congenital Heart Defects, Ellen Garver, Christopher B. Rodell, Kristen Shema, Krianthan Govender, Samantha E. Cassel, Bryan Ferrick, Gabriella Kupsho, Ethan Kung, Kara L. Spiller, Randy Stevens, Amy L. Throckmorton

Publications

Despite advancements in procedures and patient care, mortality rates for neonatal recipients of the Norwood procedure, a palliation for single ventricle congenital malformations, remain high due to the use of a fixed-diameter blood shunt. In this study, a new geometrically tunable blood shunt was investigated to address limitations of the current treatment paradigm (e.g., Modified Blalock-Taussig Shunt) by allowing for controlled modulation of blood flow through the shunt to accommodate physiological changes due to the patient’s growth. First, mathematical and computational cardiovascular models were established to investigate the hemodynamic requirements of growing neonatal patients with shunts and to inform design …


Therapeutic Injectable Iron-Chelating Hydrogels, Debbie Campbell-Rance Jan 2022

Therapeutic Injectable Iron-Chelating Hydrogels, Debbie Campbell-Rance

Theses and Dissertations

ABSTRACT

Therapeutic Injectable Iron-Chelating Hydrogels for Improved Central Nervous System Regeneration

By

Debbie S. Campbell-Rance

A dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy at Virginia Commonwealth University 2021.

Director: Xuejun Wen, M.D., Ph.D., AIMBE Fellow, Alice T. and William H. Goodwin Jr. Endowed Chair Professor in Regenerative Medicine, Institute for Engineering and Medicine, Department of Chemical and Life Science Engineering

Severe traumatic brain and spinal cord injuries are major global public health and socioeconomic problems in terms of mortality and morbidity. Currently there are two main lines of treatment under development for …


A Highly Conductive, Flexible, And 3d-Printable Carbon Nanotube-Elastomer Ink For Additive Bio-Manufacturing, Andy Shar, Phillip Glass, Daeha Joung Ph.D. Jan 2022

A Highly Conductive, Flexible, And 3d-Printable Carbon Nanotube-Elastomer Ink For Additive Bio-Manufacturing, Andy Shar, Phillip Glass, Daeha Joung Ph.D.

Undergraduate Research Posters

The synthesis of a highly conductive, flexible, 3D-printable, and biocompatible ink has been of great interest in the field of bio-based additive manufacturing. Various applications include ultra-sensitive, microscale tactile sensors, patient-customizable scaffolds for cardiac and nerve tissue regeneration, and flexible electrocardiogram (ECG) electrodes. Here, a novel elastomeric carbon nanocomposite is presented consisting of amino-functionalized carbon nanotubes (CNT-NH2) homogenously dispersed in a one-part room-temperature vulcanizing (RTV) silicone matrix. The use of acetone as a swelling solvent aids in electrical percolation through the elastomer matrix. CNT-NH2 ratios can be tuned to fit various needs; higher tensile strength is favored …


Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman Jan 2022

Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman

Graduate Theses, Dissertations, and Problem Reports

The specificity and efficiency with which enzymes catalyze selective chemical reactions far exceeds the performance of traditional heterogeneous catalysts that are predominant in industrial applications such as conversion of commodity chemicals to value-added products, fuel cells, and petroleum refinement. Moreover, biocatalysts exhibit exceptionally high product turnover at ambient conditions with little health and environmental burden. These advantageous qualities have led to the prolific use of enzyme catalysis in pharmaceutical, detergents, and food preservation industries wherein their use has greatly reduced waste generation, Unfortunately, the full slate of benefits that enzymes can impart to a broader range of chemical processes is …


Injectable Decellularized Nucleus Pulposus Tissue Exhibits Neuroinhibitory Properties, Logan M. Piening, David J. Lillyman, Fei San Lee, Alvaro Moreno Lozano, Jeremy R. Miles, Rebecca A. Wachs Dec 2021

Injectable Decellularized Nucleus Pulposus Tissue Exhibits Neuroinhibitory Properties, Logan M. Piening, David J. Lillyman, Fei San Lee, Alvaro Moreno Lozano, Jeremy R. Miles, Rebecca A. Wachs

Department of Biological Systems Engineering: Papers and Publications

Background: Chronic low back pain (LBP) is a leading cause of disability, but treatments for LBP are limited. Degeneration of the intervertebral disc due to loss of neuroinhibitory sulfated glycosaminoglycans (sGAGs) allows nerves from dorsal root ganglia to grow into the core of the disc. Treatment with a decellularized tissue hydrogel that contains sGAGs may inhibit nerve growth and prevent discassociated LBP.

Methods: A protocol to decellularize porcine nucleus pulposus (NP) was adapted from previous methods. DNA, sGAG, α-gal antigen, and collagen content were analyzed before and after decellularization. The decellularized tissue was then enzymatically modified to be …


Piezoelectric Signals In Vascularized Bone Regeneration, Delfo D’Alessandro, Claudio Ricci, Mario Milazzo, Giovanna Strangis, Francesca Forli, Gabriele Buda, Mario Petrini, Stefano Berrettini, M. Jasim Uddin, Serena Danti, Paolo Parchi Nov 2021

Piezoelectric Signals In Vascularized Bone Regeneration, Delfo D’Alessandro, Claudio Ricci, Mario Milazzo, Giovanna Strangis, Francesca Forli, Gabriele Buda, Mario Petrini, Stefano Berrettini, M. Jasim Uddin, Serena Danti, Paolo Parchi

Chemistry Faculty Publications and Presentations

The demand for bone substitutes is increasing in Western countries. Bone graft substitutes aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds can be designed by incorporating bone stem cells to decrease the disadvantages of traditional tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful regeneration. It has been demonstrated that bone and …


Fabrication And Comparative Study Of Horizontal And Vertical Electrospun Protein-Polysaccharide Nanofiber Biomaterials, Ashley Rivera-Galleti Sep 2021

Fabrication And Comparative Study Of Horizontal And Vertical Electrospun Protein-Polysaccharide Nanofiber Biomaterials, Ashley Rivera-Galleti

Theses and Dissertations

The use of biocompatible and biodegradable composite materials for biomedical applications has attracted the attention of many researchers in the past few years. In this study, we fabricated nanofibers of silk fibroin and cellulose and its derivatives to amalgamate their unique properties into a single material. The production of these nanofibers via electrospinning is of particular interest, and whereas several studies have been done on normal nanofibers, the formation of branched nanofibers is an exciting area not currently explored. Blend solutions are formed by dissolving silk and cellulose/cellulose acetate in formic acid separately and mixing to achieve the desired ratios. …


Thermal & Mechanical Analysis Of Bombyx Mori Silk Nanofibers, Justin Busnot Jul 2021

Thermal & Mechanical Analysis Of Bombyx Mori Silk Nanofibers, Justin Busnot

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis presents a study on the thermomechanical properties of Bombyx Mori silk nanofibers. These nanofibers were obtained from silkworm cocoons which were degummed to separate the fibroin and the sericin, the two proteins that make up silk. The fibroin was then centrifuged to remove insoluble particles and stored and 4°C before the electrospinning process. A parametric study of the electrospinning process was carried out in order to identify the factors allowing to obtain optimal mechanical properties. The current as well as the flow rate applied, the diameter of the syringe, the distance separating the syringe from collector or even …


Development Of Multifunctional Drug Delivery Systems For Locoregional Therapy, Xinyi Li Jul 2021

Development Of Multifunctional Drug Delivery Systems For Locoregional Therapy, Xinyi Li

Electronic Thesis and Dissertation Repository

Locoregional treatment is the specific delivery of therapeutics to their desired sites of action with minimized systemic adverse effects. In this approach, drug is administered through topical instillation, inhalation, intra-lesional or intra-arterial injection. Decades of experience in locoregional treatment have delivered meaningful benefits to patients with localized diseases (e.g., osteoarthritis, ocular disorders and liver cancers). However, improvements are required for this type of treatment to be more effective. For transarterial chemoembolization (TACE) therapy of hepatocellular carcinoma (HCC), the most current approaches do not allow repeat treatment as the drug delivery vehicle is not degradable. In addition, image contrast agents for …


Synthesis And Performance Testing Of Ecm Fiber Scaffolds, Cassandra Reed Jul 2021

Synthesis And Performance Testing Of Ecm Fiber Scaffolds, Cassandra Reed

Graduate Theses and Dissertations

The progression of regenerative medicine has advanced the treatment of multiple illnesses and injuries throughout the years. A good example of the benefits of this research is the work that has gone into volumetric muscle loss (VML), where more than 20% of the muscle is loss. Skeletal muscle makes up 40% of the human body so a loss of that size greatly diminishes the strength, the flexibility, physiology, and quality of life of the injured individual. For that reason, various techniques are used to counteract the loss of structure and innate cellular signaling in order to circumvent that from happening. …