Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Seismic Response Of Driven And Helical Piles In Non-Liquefiable And Liquefiable Soils, Ahmed Fouad Hussein Dec 2021

Seismic Response Of Driven And Helical Piles In Non-Liquefiable And Liquefiable Soils, Ahmed Fouad Hussein

Electronic Thesis and Dissertation Repository

The thesis investigates the nonlinear soil-pile-structure interaction through three-dimensional nonlinear finite element models (FEM) employing the OpenSees platform. The FEMs were validated with the results of large-scale shaking table tests of model pile groups-superstructure systems in dry and saturated sand and large-scale field tests on single piles installed in cohesive soil. The numerical models correctly predicted the different pile deformation modes that were exhibited in the experiments. The results illustrated that the inertial interaction contributed to the bending moments at the pile top, while the kinematic interaction contributed to the bending moment at the layers interface. In addition, the excess …


The Development Of A Finite Element Model For Ballistic Impact Predictions, Richard Allen Perkins Dec 2021

The Development Of A Finite Element Model For Ballistic Impact Predictions, Richard Allen Perkins

Theses and Dissertations

Concrete is a widely used product and is an important application throughout industry due to its inexpensive cost and wide range of applications. This work focuses on understanding the behavior of high strength concrete in high strain rate ballistic impact loading scenarios. A finite element analysis was created with the implementation of the Concrete Damage and Plasticity Model 2 (CDPM2) to represent the material behavior. The model’s parameters were calibrated to existing literature and the results were analyzed by a comparison of the impact velocity to residual velocity and a qualitative assessment of the impact crater. The model captured the …


Structural Impacts Of Super Heavy Load (Shl) Vehicles On Transportation Infrastructure, Ali Morovatdar Dec 2021

Structural Impacts Of Super Heavy Load (Shl) Vehicles On Transportation Infrastructure, Ali Morovatdar

Open Access Theses & Dissertations

Operation of non-conventional Super Heavy Load (SHL) vehicles is an ongoing challenge for transportation stakeholders and the traveling public across the nation. Despite facilitating the movement of heavy, large, and non-divisible loads, passages of such vehicles with complex loading configurations that typically weigh several folds of the permissible weight limits set forth by regulatory agencies have been adversely affecting the structural integrity of pavement facilities. This translates into accelerated damage of pavement structures, which in turn poses safety concerns for users of the transportation facilities. Accurate quantification of such detrimental impacts is the precursor to preserve the existing transportation facilities. …


An Adjustable Stiffness Torsional Magnetic Spring With A Linear Stroke Length, Dawei Che, Jonathan Z. Bird, Alex Hagmüller, Md Emrad Hossain Nov 2021

An Adjustable Stiffness Torsional Magnetic Spring With A Linear Stroke Length, Dawei Che, Jonathan Z. Bird, Alex Hagmüller, Md Emrad Hossain

Electrical and Computer Engineering Faculty Publications and Presentations

This paper presents the analysis, mechanical design, and proof-of-principle experimental testing of a new type of adjustable stiffness torsional magnetic spring for an ocean generator application. Unlike prior published designs the rotary magnetic spring is shown to have a highly linear adjustable stroke length. The presented torsional spring is experimentally shown to be able to create a ± 45° angular stroke range with a peak torque of ± 39.1 N·m. The stiffness is adjusted by using a stepper motor to axially adjust the axial magnet offset. The stepper motor contains a brake so that power is not expended when maintaining …


Development Of A Novel Quartz Crystal Microbalance Based On Distribution Of Mass Loading Area For Improving Mass Sensitivity, Siddharth Swaminathan Oct 2021

Development Of A Novel Quartz Crystal Microbalance Based On Distribution Of Mass Loading Area For Improving Mass Sensitivity, Siddharth Swaminathan

Electronic Theses and Dissertations

The growing concerns regarding atmospheric toxins and their detrimental effects on life establishes the necessity to identify and monitor them. Environmental monitoring demonstrates an effective method to controlling the impact of atmospheric pollutants using gas sensors. The Quartz Crystal Microbalance (QCM) is one such device which has been widely used for detecting microgram level mass changes in gas and liquid phase. In this research a novel approach to designing QCM electrode configurations based on distributing the mass loading area to improve the mass sensitivity is proposed. Conventional QCM designs comprise a circular electrode configuration with an evenly distributed mass loading …


Significance Of The Neck In Concussive Head Impacts – A Computational Approach, Sakib Ul Islam Aug 2021

Significance Of The Neck In Concussive Head Impacts – A Computational Approach, Sakib Ul Islam

Electronic Thesis and Dissertation Repository

With the rising concern of concussions in contact sports, it is believed that cervical muscles could play a vital role in attenuating force to the head. However, the biomechanical effect of cervical muscles on head and brain response is not clearly understood. This study adopted a finite element head and neck model to replicate football impacts under various loading conditions to study the effect of neck muscles on head kinematics. Our results indicate that neck muscles have the highest amount of internal energy absorption in early impact, particularly at the time when peak head kinematics develop. Both deep and superficial …


In Situ Characterization Of Fiber-Matrix Interface Debonding Via Full-Field Measurements, Robert Livingston Jun 2021

In Situ Characterization Of Fiber-Matrix Interface Debonding Via Full-Field Measurements, Robert Livingston

Theses and Dissertations

Macroscopic mechanical and failure properties of fiber-reinforced composites depend strongly on the properties of the fiber-matrix interface. For example, transverse cracking behavior and interlaminar shear strength of composites can be highly sensitive to the characteristics of the fiber-matrix interface. Despite its importance, experimental characterization of the mechanical behavior of the fiber-matrix interface under normal loading conditions has been limited. This work reports an experimental approach that uses in situ full-field digital image correlation (DIC) to quantify the mechanical and failure behaviors at the fiber-matrix interface. Single fiber model composite samples are fabricated from a proprietary epoxy embedding a single glass …


Ultra-High Performance Concrete (Uhpc) Deck-To-Girder Connection For Accelerated Bridge Construction, Mostafa Abo El-Khier Apr 2021

Ultra-High Performance Concrete (Uhpc) Deck-To-Girder Connection For Accelerated Bridge Construction, Mostafa Abo El-Khier

Department of Construction Engineering and Management: Dissertations, Theses, and Student Research

Precast concrete deck systems have been successfully used for Accelerated Bridge Construction. In most systems, special deck-to-girder connections are designed to achieve structurally composite sections. These connections require tight production/erection tolerances that complicate deck and girder fabrication and compromise the economics of these systems. This study presents a new precast concrete deck-to-girder connection that takes advantage of the excellent mechanical, workability, and durability properties of ultra-high performance concrete (UHPC) to simplify precast concrete deck and girder fabrication and erection. Typical girder shear reinforcement is terminated below the soffit of deck panels to eliminate any conflicts with deck reinforcement and relax …


Computational Bone Mechanics Modeling With Frequency Dependent Rheological Properties And Crosslinking, Timothy G. Moreno Mar 2021

Computational Bone Mechanics Modeling With Frequency Dependent Rheological Properties And Crosslinking, Timothy G. Moreno

Master's Theses

Bone is a largely bipartite viscoelastic composite. Its mechanical behavior is determined by strain rate and the relative proportions of its principal constituent elements, hydroxyapatite and collagen, but is also largely dictated by their geometry and topology. Collagen fibrils include many segments of tropocollagen in staggered, parallel sequences. The physical staggering of this tropocollagen allows for gaps known as hole-zones, which serve as nucleation points for apatite mineral. The distance between adjacent repeat units of tropocollagen is known as D-Spacing and can be measured by Atomic Force Microscopy (AFM). This D-Spacing can vary in length slightly within a bundle, but …


Effective Modulus Of Cracked Bodies: A Finite Element Analysis, Alan Thomas Varughese Jan 2021

Effective Modulus Of Cracked Bodies: A Finite Element Analysis, Alan Thomas Varughese

Theses and Dissertations--Mechanical Engineering

This thesis considers how cracks in an elastic body can alter the body’s elastic properties. In the present study the elastic property of note is the elastic or young’s modulus. It is desired to investigate to what extent the number and orientation of cracks can cause a reduction in the elastic modulus. Because of the complex nature of the elastic fields resulting from multiple cracks interacting together in a finite geometry an analytical solution is not possible or considered. Rather the Finite Element Method is used to determine the elastic response to a body with many cracks. This provides a …


Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali Jan 2021

Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali

Doctoral Dissertations

"Shovel-truck systems are the most widely employed excavation and material handling systems for surface mining operations. During this process, a high-impact shovel loading operation (HISLO) produces large forces that cause extreme whole body vibrations (WBV) that can severely affect the safety and health of haul truck operators. Previously developed solutions have failed to produce satisfactory results as the vibrations at the truck operator seat still exceed the “Extremely Uncomfortable Limits”. This study was a novel effort in developing deep learning-based solution to the HISLO problem.

This research study developed a rigorous mathematical model and a 3D virtual simulation model to …