Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Adhesion And Deformation Mechanisms Of Polydopamine And Polytetrafluoroethylene: A Multiscale Computational Study, Matthew Brownell Dec 2020

Adhesion And Deformation Mechanisms Of Polydopamine And Polytetrafluoroethylene: A Multiscale Computational Study, Matthew Brownell

Graduate Theses and Dissertations

Polydopamine (PDA) has been shown to bond via covalent bonding, van der Waals forces, and hydrogen bonding and is known to adhere strongly to almost any material. The application of PDA between a substrate and a PTFE surface coating has resulted in low friction and a greatly reduced wear rate. Previous research probing the capabilities and limitations of PDA/PTFE films have studied the wear and mechanical properties of the film, but the overall adhesive and deformation mechanisms remain unclear.

In this research, we investigate the tribological properties of PDA and PTFE molecules and composites from the atomic to the microscale …


In Vitro Method To Quantify And Visualize Volumetric Wear In Meniscus Subjected To Joint Loading Using A 3d Optical Scanner, Kate J. Benfield Dec 2020

In Vitro Method To Quantify And Visualize Volumetric Wear In Meniscus Subjected To Joint Loading Using A 3d Optical Scanner, Kate J. Benfield

Boise State University Theses and Dissertations

The menisci are fibrocartilaginous soft tissues that act to absorb and distribute load across the surface of the knee joint. As a result of mechanical wear and large repetitive loading, meniscus tissue can begin to breakdown, or degenerate. Meniscus degeneration increases the risk of tearing, weakened tissue integrity, and the progression of osteoarthritis. Therefore, it is imperative to understand the wear behavior of whole human meniscus to identify conditions that may significantly increase the risk of degeneration.

The objective of this study is to develop and validate an in vitro methodology for characterizing volumetric wear behavior in whole human meniscus …


Friction And Wear Behaviors Of Mos2-Multi-Walled-Carbon-Nanotube Hybrid Reinforced Polyurethane Composite Coating, Zhaozhu Zhang, Mingming Yang, Junya Yuan, Fang Guo, Xuehu Men Oct 2020

Friction And Wear Behaviors Of Mos2-Multi-Walled-Carbon-Nanotube Hybrid Reinforced Polyurethane Composite Coating, Zhaozhu Zhang, Mingming Yang, Junya Yuan, Fang Guo, Xuehu Men

Friction

MoS2-multi-walled-carbon-nanotube (MWCNT) hybrids containing two-dimensional MoS2 and one-dimensional MWCNTs were synthesized through a one-step hydrothermal reaction. X-ray-diffraction and transmission-electron-microscopy results demonstrated that MoS2 nanosheets were successfully synthesized, and uniformly anchored on the MWCNTs' surfaces. Furthermore, the effects of the MoS2-MWCNT hybrids on the tribological performances of polyurethane composite coatings were investigated using a UMT-2MT tribo-tester. Friction and wear test results revealed that the friction coefficient and wear rate of a 3 wt% MoS2-MWCNT-1 filled polyurethane composite coating were reduced by 25.6% and 65.5%, respectively. The outstanding tribological performance of the MoS2-MWCNT-1 reinforced polyurethane composite coating was attributed to the excellent …


Friction Predication On Pin-To-Plate Interface Of Ptfe Material And Steel, Zhuming Bi, Donald W. Mueller Oct 2020

Friction Predication On Pin-To-Plate Interface Of Ptfe Material And Steel, Zhuming Bi, Donald W. Mueller

Friction

In this paper, the friction behavior at a pin-to-plate interface is investigated. The pin and plate are made of Polytetrafluoroethylene (PTFE) and steel, respectively, and there is a reciprocating motion at the interface. Governing mathematical models for the relations of design variables and frictions are investigated, and a general procedure is proposed to solve the developed models and predict the friction forces at the interface subjected to given test conditions. Novel models have been developed to represent intrigued friction behaviors affected by various factors such as pin geometrics and finishes, lubrication conditions, and reciprocating speed. The test data from experiments …


Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova Oct 2020

Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova

Friction

This review focuses on the effect of metal-containing nanomaterials on tribological performance in oil lubrication. The basic data on nanolubricants based on nanoparticles of metals, metal oxides, metal sulfides, nanocomposities, and rare-earth compounds are generalized. The influence of nanoparticle size, morphology, surface functionalization, and concentration on friction and wear is analyzed. The lubrication mechanisms of nanolubricants are discussed. The problems and prospects for the development of metal-containing nanomaterials as lubricant additives are considered. The bibliography includes articles published during the last five years.


Numerical Analysis Of Time-Varying Wear With Elastic Deformation In Line Contact, Wanglong Zhan, Ping Huang Oct 2020

Numerical Analysis Of Time-Varying Wear With Elastic Deformation In Line Contact, Wanglong Zhan, Ping Huang

Friction

Wear is an important factor for failures of mechanical components. Current research on wear is mainly focused on experiments while the numerical simulation of wear is hardly used owing to the complexities of the wear process. Explaining the effect of friction on the wear process is important, as it will lead to a deeper understanding of the evolution of wear. This study proposed a numerical method to expound the wear process in the contact between an elastic cylinder and a half-space simulating the ring-block tester. There are two difficulties during the calculation; one is that the contact shapes vary with …


Hybrid Nanocellulose-Copper (Ii) Oxide As Engine Oil Additives For Tribological Behavior Improvement, Sakinah Hisham, Kumaran Kadirgama, Hussein A. Mohammed, Amit Kumar, Devarajan Ramasamy, Mahendran Samykano, Saidur Rahman Jul 2020

Hybrid Nanocellulose-Copper (Ii) Oxide As Engine Oil Additives For Tribological Behavior Improvement, Sakinah Hisham, Kumaran Kadirgama, Hussein A. Mohammed, Amit Kumar, Devarajan Ramasamy, Mahendran Samykano, Saidur Rahman

Research outputs 2014 to 2021

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Friction and wear are the main factors in the failure of the piston in automobile engines. The objective of this work was to improve the tribological behaviour and lubricant properties using hybrid Cellulose Nanocrystal (CNC) and Copper (II) oxide nanoparticles blended with SAE 40 as a base fluid. The two-step method was used in the hybrid nanofluid preparation. Three different concentrations were prepared in a range of 0.1% to …


Increasing The Strength Of Worn Parts Withcomposite Materials, Masud Numonzhonovich Masharipov, Shuhratbek Xabibullo Ogli Yuldashev Jun 2020

Increasing The Strength Of Worn Parts Withcomposite Materials, Masud Numonzhonovich Masharipov, Shuhratbek Xabibullo Ogli Yuldashev

Journal of Tashkent Institute of Railway Engineers

Researches are carried out on the built-up curly details. The aim of the study is to restore worn surfaces of parts by surfacing of powder composite materials. Inves-tigations are carried out to determine the composition, structure, hardness and wear resistance of the deposited layers. As a result of laboratory studies, the opti-mal composition of the surfacing material and the rational method of applying them to the worn surfaces of machine parts are selected.


Reducing Road Wear While Ensuring Comfort And Charging Constraints For Dynamically Charged Passenger Vehicles Through Noise-Shaped Path Variations, Clint Jay Ferrin, Randall Christensen Mar 2020

Reducing Road Wear While Ensuring Comfort And Charging Constraints For Dynamically Charged Passenger Vehicles Through Noise-Shaped Path Variations, Clint Jay Ferrin, Randall Christensen

Electrical and Computer Engineering Faculty Publications

Dynamically charged vehicles suffer from power loss during wireless power transfer due to receiver and transmitter coil misalignment while driving. Autonomous, dynamically charged vehicles can maximize wireless power transfer by minimizing the misalignment, but the repeated high-precision driving increases road wear. To avoid unnecessary road wear and rutting, a noise shaping filter is proposed that adds variability to a vehicle's trajectory that complies with passenger acceleration and position constraints. However, introducing variability into an optimal charging path also risks depleting battery life prior to destination arrival. Therefore, a path planner is proposed that guarantees average charge within a specified probability …


The Performance Of Sio2 And Tio2 Nanoparticles As Lubricant Additives In Sunflower Oil, Vicente Cortes, Karen Sanchez, Mataz Alcoutlabi, Javier A. Ortega Jan 2020

The Performance Of Sio2 And Tio2 Nanoparticles As Lubricant Additives In Sunflower Oil, Vicente Cortes, Karen Sanchez, Mataz Alcoutlabi, Javier A. Ortega

Mechanical Engineering Faculty Publications and Presentations

In recent years, there has been growing concern regarding the use of petroleum-based lubricants. This concern has generated interest in readily biodegradable fluids such as vegetable oils. The present work evaluated the rheological and tribological characteristics of sunflower oil modified with silicon dioxide (SiO2) and titanium dioxide (TiO2) nanoparticles as lubricant additives at different concentrations. A parallel plate rheometer was used to evaluate the eects of concentration and shear rate on the shear viscosity, and the experimental data was compared with conventional models. The wear protection and friction characteristics of the oil-formulations were evaluated by conducting block-on-ring sliding tests. Surface …


Phase Transformation-Induced Improvement In Hardness And High-Temperature Wear Resistance Of Plasma-Sprayed And Remelted Nicrbsi/Wc Coatings, Jin Sha, Liang-Yu Chen, Yi-Tong Liu, Zeng-Jian Yao, Sheng Lu, Ze-Xin Wang, Qian-Hao Zang, Shu-Hua Mao, Lai-Chang Zhang Jan 2020

Phase Transformation-Induced Improvement In Hardness And High-Temperature Wear Resistance Of Plasma-Sprayed And Remelted Nicrbsi/Wc Coatings, Jin Sha, Liang-Yu Chen, Yi-Tong Liu, Zeng-Jian Yao, Sheng Lu, Ze-Xin Wang, Qian-Hao Zang, Shu-Hua Mao, Lai-Chang Zhang

Research outputs 2014 to 2021

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. The remelting method is introduced to improve the properties of the as-sprayed NiCrBSi coatings. In this work, tungsten carbide (WC) was selected as reinforcement and the as-sprayed and remelted NiCrBSi/WC composite coatings were investigated by X-ray diffraction, scanning electron microscopy, hardness test and tribology test. After spraying, WC particles are evenly distributed in the coating. The remelting process induced the decarburizing reaction of WC, resulting in the formation of dispersed W2 C. The dispersed W2 C particles play an important role in the dispersion strengthening. Meanwhile, the pores and lamellar structures …