Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2019

Autonomous

Discipline
Institution
Publication
Publication Type

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Flex-Ro: A Robotic High Throughput Field Phenotyping System, Joshua N. Murman Dec 2019

Flex-Ro: A Robotic High Throughput Field Phenotyping System, Joshua N. Murman

Department of Biological Systems Engineering: Dissertations and Theses

Research in agriculture is critical to developing techniques to meet the world’s demand for food, fuel, fiber, and feed. Optimization of crop production per unit of land requires scientists across disciplines to collaborate and investigate new areas of science and tools for data collection. The use of robotics has been adopted in several industries to supplement labor, and accurately perform repetitious tasks. However, the use of autonomous robots in commercial agricultural production is still limited. The Flex-Ro (Flexible structured Robotic platform) was developed for use in large area fields as a multipurpose tool to perform monotonous agricultural tasks.

This work …


Vision-Based Autonomous Tracking Of A Non-Cooperative Mobile Robot By A Low-Cost Quadrotor Vehicle, Cheikhna Ahmed Tidiane Sy Nov 2019

Vision-Based Autonomous Tracking Of A Non-Cooperative Mobile Robot By A Low-Cost Quadrotor Vehicle, Cheikhna Ahmed Tidiane Sy

Electrical and Computer Engineering ETDs

The goal of this thesis is the detection and tracking of a ground vehicle, in particular a car-like robot, by a quadrotor. The first challenge to address in any pursuit or tracking scenario is the detection and unique identification of the target. From this first challenge, comes the need to precisely localize the target in a coordinate system that is common to the tracking and tracked vehicles. In most real-life scenarios, the tracked vehicle does not directly communicate information such as its position to the tracking one. From this fact, arises a non-cooperative constraint problem. The autonomous tracking aspect of …


A Novel And Inexpensive Solution To Build Autonomous Surface Vehicles Capable Of Negotiating Highly Disturbed Environments, Jason Moulton Oct 2019

A Novel And Inexpensive Solution To Build Autonomous Surface Vehicles Capable Of Negotiating Highly Disturbed Environments, Jason Moulton

Theses and Dissertations

This dissertation has four main contributions. The first contribution is the design and build of a fleet of long-range, medium-duration deployable autonomous surface vehicles (ASV). The second is the development, implementation, and testing of inex-pensive sensors to accurately measure wind, current, and depth environmental vari- ables. The third leverages the first two contributions, and is modeling the effects of environmental variables on an ASV, finally leading to the development of a dynamic controller enabling deployment in more uncertain conditions.

The motivation for designing and building a new ASV comes from the lack of availability of a flexible and modular platform …


Communication Capability For A Simulation-Based Test And Evaluation Framework For Autonomous Systems, Ntiana Sakioti Oct 2019

Communication Capability For A Simulation-Based Test And Evaluation Framework For Autonomous Systems, Ntiana Sakioti

Computational Modeling & Simulation Engineering Theses & Dissertations

The design and testing process for collaborative autonomous systems can be extremely complex and time-consuming, so it is advantageous to begin testing early in the design. A Test & Evaluation (T&E) Framework was previously developed to enable the testing of autonomous software at various levels of mixed reality. The Framework assumes a modular approach to autonomous software development, which introduces the possibility that components are not in the same stage of development. The T&E Framework allows testing to begin early in a simulated environment, with the autonomous software methodically migrating from virtual to augmented to physical environments as component development …


Full-Pose Estimation And Tracking Control For A Multi-Rotor Aircraft Package Exchange, Trent P. Smith Aug 2019

Full-Pose Estimation And Tracking Control For A Multi-Rotor Aircraft Package Exchange, Trent P. Smith

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

In this work, research to develop algorithms for a package exchange maneuver between two quad-rotor aircraft is presented. First, the development of tools used for this research is discussed. Second, a controller is designed that synchronizes the flight paths and motion of two quad-rotor robots. The controller is used to guide a designated follower quad-rotor to follow a leader aircraft’s position and orientation. The follower aircraft is equipped with a simple mechanical manipulator to compensate for limitations in the aircrafts maneuverability. finally, a sensor architecture study for relative navigation of Unmanned Aerial Vehicles (UAV) is presented. The architecture study presents …


Viewpoint Optimization For Autonomous Strawberry Harvesting With Deep Reinforcement Learning, Jonathon J. Sather Jun 2019

Viewpoint Optimization For Autonomous Strawberry Harvesting With Deep Reinforcement Learning, Jonathon J. Sather

Master's Theses

Autonomous harvesting may provide a viable solution to mounting labor pressures in the United States' strawberry industry. However, due to bottlenecks in machine perception and economic viability, a profitable and commercially adopted strawberry harvesting system remains elusive. In this research, we explore the feasibility of using deep reinforcement learning to overcome these bottlenecks and develop a practical algorithm to address the sub-objective of viewpoint optimization, or the development of a control policy to direct a camera to favorable vantage points for autonomous harvesting. We evaluate the algorithm's performance in a custom, open-source simulated environment and observe affirmative results. Our trained …


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino May 2019

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Undergraduate Theses and Capstone Projects

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats and an increasing popularity of self-driving cars. We simulated the motion of an autonomous vehicle using computational models. The simulation models the motion of a small-scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as various biases …


Building A Simple Smart Factory, Iman Abdulwaheed May 2019

Building A Simple Smart Factory, Iman Abdulwaheed

Mechanical Engineering Theses

This thesis describes (a) the search and findings of smart factories and their enabling technologies (b) the methodology to build or retrofit a smart factory and (c) the building and operation of a simple smart factory using the methodology. A factory is an industrial site with large buildings and collection of machines, which are operated by persons to manufacture goods and services. These factories are made smart by incorporating sensing, processing, and autonomous responding capabilities.

Developments in four main areas (a) sensor capabilities (b) communication capabilities (c) storing and processing huge amount of data and (d) better utilization of technology …


Autonomous Vehicles Operating Collaboratively To Avoid Debris And Obstructions, Toan T. Le, Cole W. Oppenheim, James H. Gildart, Kyle M. Bybee May 2019

Autonomous Vehicles Operating Collaboratively To Avoid Debris And Obstructions, Toan T. Le, Cole W. Oppenheim, James H. Gildart, Kyle M. Bybee

Mechanical Engineering

The purpose of this project is to demonstrate the safety and increased fuel efficiency of an automated collision avoidance system in collaborative vehicle platooning. This project was cosponsored by Daimler Trucks North America headquartered in Portland, Oregon, as well as Dr. Birdsong, and Dr. DeBruhl of Cal Poly. The mechanical engineering team consists of Cole Oppenheim, James Gildart, Toan Le, and Kyle Bybee who worked in coordination with a team of computer engineers. Vehicle platooning is a driving technique to increase the fuel efficiency of a group of vehicles by following a lead vehicle closely to reduce the drag experienced …


Ares Cleaning System, Andy Sagers, John Cunningham, Peter Greig, Jack Glynn Jan 2019

Ares Cleaning System, Andy Sagers, John Cunningham, Peter Greig, Jack Glynn

Mechanical Engineering

In this Final Design Review, the team outlines the general scope of the ARES Cleaning System project and the final design direction chosen and built. This team consists of a group of four mechanical engineering students who have been tasked with designing and manufacturing an autonomous ARES cleaning system to help their sponsor, Fracsun, better track soiling losses measured at large solar arrays. They designed, conceptualized, manufactured, and tested throughout the project as they looked to create a final, functioning product. In creating this Final Design Review, they have identified how the product will perform the desired functions and what …


Autonomous Airliners Anytime Soon?, Samuel M. Vance, Evan C. Bird, Daniel J. Tiffin Jan 2019

Autonomous Airliners Anytime Soon?, Samuel M. Vance, Evan C. Bird, Daniel J. Tiffin

International Journal of Aviation, Aeronautics, and Aerospace

This research seeks to extend the body of knowledge on factors influential in the decision to fly on an autonomous airliner as a passenger. Only a handful of studies have probed this direct question in the last 16 years, but the data is showing a growing public acceptance of this type of travel. Pivotal in this consideration is the basic element of trust – trust in automated airliners and trust in the airline and Air Traffic Control systems which are responsible for autonomous airliners. Human trust has many forms and manifestations, but in the end, it is a dichotomous or …


Space Dynamics Laboratory Payload Challenge: Autonomous Water Sampling Uav, Thomas Wheeler, Zachary Williams, Joseph Stack Jan 2019

Space Dynamics Laboratory Payload Challenge: Autonomous Water Sampling Uav, Thomas Wheeler, Zachary Williams, Joseph Stack

Williams Honors College, Honors Research Projects

The following report has been completed over the course of the Fall 2018 and Spring 2019 semesters at The University of Akron by Joseph P. Stack (Aerospace Systems Engineering), Thomas J. Wheeler (Mechanical Engineering) and Zachary M. Williams (Mechanical Engineering). The purpose of this project was to create a payload system for the Akronauts Rocket Design Team to use at the Intercollegiate Rocket Engineering Competition (IREC) Spaceport America Cup. The Competition as a challenge that is sponsored by Space Dynamics Laboratory specifically regarding payload systems. The challenge in very open-ended and allows student to identify their own scientific experiment and …


Autonomous Combat Robot, Andrew J. Szabo Ii, Chris Heldman, Tristin Weber, Tanya Tebcherani, Holden Leblanc, Fabian Ardeljan Jan 2019

Autonomous Combat Robot, Andrew J. Szabo Ii, Chris Heldman, Tristin Weber, Tanya Tebcherani, Holden Leblanc, Fabian Ardeljan

Williams Honors College, Honors Research Projects

This honors project will also serve as an engineering senior design project.

The objective is to design and build the software and electrical systems for a 60 lb weight class combat robot that will function autonomously and outperform manually driven robots during competition.

While running autonomously, the robot will use LiDAR sensors to detect and attack opponent robots. This robot will also be able to be remote controlled in manual mode. This will mitigate the risk in case the autonomy or sensors fail. LED lights on the robot will indicate whether it is in autonomous or manual mode. The system …