Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2018

Microfluidics

Discipline
Institution
Publication
Publication Type

Articles 1 - 27 of 27

Full-Text Articles in Engineering

The Cooperative Effects Of Channel Length-Bias, Width Asymmetry, Gradient Steepness, And Contact-Guidance On Fibroblasts’ Directional Decision Making, Quang Long Pham Dec 2018

The Cooperative Effects Of Channel Length-Bias, Width Asymmetry, Gradient Steepness, And Contact-Guidance On Fibroblasts’ Directional Decision Making, Quang Long Pham

Dissertations

Cell migration in complex micro-environments, that are similar to tissue pores, is important for predicting locations of tissue nucleation and optimizing scaffold architectures. Firstly, how fibroblast cells - relevant to tissue engineering, affect each other’s directional decisions when encountered with a bifurcation of different channel lengths was investigated. It was found that cell sequence and cell mitosis influence the directional choices that the cells made while chemotaxing. Specifically, the fibroblasts chose to alternate between two possible paths - one longer and the other shorter - at a bifurcation. This finding was counter-intuitive given that the shorter path had a steeper …


Acoustofluidics And Soft Materials Interfaces For Biomedical Applications, Frank A. Fencl Nov 2018

Acoustofluidics And Soft Materials Interfaces For Biomedical Applications, Frank A. Fencl

Biomedical Engineering ETDs

This dissertation describes fabrication of devices and other tools for biomedical applications through the integration of acoustofluidic systems with bio separation assays, instrumentation components, and soft materials interfaces. For example, we engineer a new class of transparent acoustic flow chambers ideal for optical interrogation. We demonstrate efficacy of these devices by enhancing the signal for high throughput acoustic flow cytometry, capable of robust particle focusing across multiple parallel flowing streams. We also investigate an automated sampling system to determine the parameters of transient particle stream focusing in between sample boluses and air bubbles to model a high throughput, multi-sampling acoustic …


Simulation And Optimization Of A Sheathless Size-Based Acoustic Particle Separator, Shivaraman Asoda Nov 2018

Simulation And Optimization Of A Sheathless Size-Based Acoustic Particle Separator, Shivaraman Asoda

USF Tampa Graduate Theses and Dissertations

Standing surface acoustic waves (SSAW) have been widely used for sorting of cells and particles. However, the major challenges faced with the acoustic driven separation process is the need for an optimized setup to achieve effective separation and the range of particles that can be separated. In this thesis, a custom simulation model is studied to investigate and optimize the separation of varying size particles in a sheathless acoustic separation platform that was developed in our research lab. Specifically, the effect of flowrate, pressure amplitude, wavelength and interdigitated transducers (IDTs) physical parameters on the separation efficiency is explored. We also …


Turbulent Mixers For Protein Folding Experiments, Venkatesh Inguva Nov 2018

Turbulent Mixers For Protein Folding Experiments, Venkatesh Inguva

Doctoral Dissertations

Protein folding studies require the development of micro-mixers that require less sample, mix at faster rates, and still provide a high signal to noise ratio. Chaotic to marginally turbulent micro-mixers are promising candidates for this application. In this study, various turbulence and unsteadiness generation concepts are explored that avoid cavitation. The mixing enhancements include flow turning regions, flow splitters, and vortex shedding. The relative effectiveness of these different approaches for rapid micro-mixing is discussed. Simulations found that flow turning regions provided the best mixing profile. Various turbulence models are simulated to determine appropriate model of the design requirements. Experimental validation …


3d Printing For Microfluidics, Hua Gong Nov 2018

3d Printing For Microfluidics, Hua Gong

Theses and Dissertations

This dissertation focuses on developing 3D printing as a fabrication method for microfluidic devices. Specifically, I concentrate on the 3D printing approach known as Digital Light Processing stereolithography (DLP-SLA) in which serially projected images are used to sequentially photopolymerize layers to build a microfluidic device. The motivation for this work is to explore a much faster alternative to cleanroom-based microfabrication that additionally offers the opportunity to densely integrate microfluidic elements in compact 3D layouts for dramatic device volume reduction. In the course of my research, an optical approach was used to guide custom resin formulation to help create the interconnected …


Cubesat Active Thermal Management In Support Of Cooled Electro-Optical Instrumentation For Advanced Atmospheric Observing Missions, Lucas Anderson, Charles Swenson, Ryan Davidson, Arthur J. Mastropietro, Elham Maghsoudi, S. Luong, Stefano Cappucci, I. Mckinley Sep 2018

Cubesat Active Thermal Management In Support Of Cooled Electro-Optical Instrumentation For Advanced Atmospheric Observing Missions, Lucas Anderson, Charles Swenson, Ryan Davidson, Arthur J. Mastropietro, Elham Maghsoudi, S. Luong, Stefano Cappucci, I. Mckinley

Electrical and Computer Engineering Faculty Publications

The need for advanced cooled electro-optical instrumentation in remote observations of the atmosphere is well known and demonstrated by SABER on the TIMED mission. The relatively new use of small satellites in remote earth observing missions as, well as the challenges, are epitomized by the upcoming NOAA EON-IR 12U CubeSat missions. These advanced CubeSat missions, which hope to accomplish scientific objectives on the same scale as larger more traditional satellites, require advanced miniaturized cryocoolers and active methods for thermal management and power control. The active CryoCubeSat project (ACCS) is a demonstration of such a technology. Utilizing Ultrasonic Additive Manufacturing (UAM) …


Microfluidic Electrical Impedance Spectroscopy, John J. Foley Sep 2018

Microfluidic Electrical Impedance Spectroscopy, John J. Foley

Master's Theses

The goal of this study is to design and manufacture a microfluidic device capable of measuring changes in impedance valuesof microfluidic cell cultures. Tocharacterize this, an interdigitated array of electrodes was patterned over glass, where it was then bonded to a series of fluidic networks created in PDMS via soft lithography. The device measured ethanol impedance initially to show that values remain consistent over time. Impedance values of water and 1% wt. saltwater were compared to show that the device is able to detect changes in impedance, with up to a 60% reduction in electrical impedance in saltwater. Cells were …


Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh Aug 2018

Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh

LSU Doctoral Dissertations

Challenges in drug efficacy occur during the treatment of most types of cancer due to the heterogeneity of the tumor microenvironment. This has led to the development of personalized medicine. Due to the clinical success of the proteasome inhibitors Bortezomib and Carfilzomib in treatment of multiple myeloma, interest has shifted towards molecularly-targeted chemotherapeutics for ubiquitin-proteasome system (UPS). Deubiquitinating enzymes (DUBs) are an essential part of this pathway which have been found to promote Bortezomib resistance in multiple myeloma patients. Unfortunately, there is a lack of specific, high throughput biochemical assays to characterize DUB activity in patient samples before and after …


Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora Jul 2018

Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora

Biomedical Sciences ETDs

Adaptation of cancer cells to changes in the biochemical microenvironment in an expanding tumor mass is a crucial aspect of malignant progression, tumor metabolism, and drug efficacy. In vitro, it is challenging to mimic the evolution of biochemical gradients and the cellular heterogeneity that characterizes cancer tissues found in vivo. It is well accepted that more realistic and controllable in vitro 3D model systems are required to improve the overall cancer research paradigm and thus improve on the translation of results, but multidisciplinary approaches are needed for these advances. This work develops such approaches and demonstrates that new droplet-based cell-encapsulation …


Milkguard: Low-Cost, Polymer-Based Sensor For The Detection Of Escherichia Coli In Donated Human Breast Milk, Maggie May, Nicholas Kikuchi, Matthew Zweber Jun 2018

Milkguard: Low-Cost, Polymer-Based Sensor For The Detection Of Escherichia Coli In Donated Human Breast Milk, Maggie May, Nicholas Kikuchi, Matthew Zweber

Bioengineering Senior Theses

Breast milk, the gold standard for infant nutrition, could prevent up to 13% of child deaths worldwide. However, many mothers are unable to breastfeed due to health conditions and other factors. Because of this, a network of more than 500+ human milk banks, which collect and distribute donated breast milk to infants, have emerged worldwide. However, operational costs to ensure the safety of this milk remain time-intensive and costly.

There are no existing diagnostics for rapid and on-site detection of bacterial contaminants in donated milk. Currently, many milk banks send samples to outside laboratories for bacterial culturing tests, which take …


Microfluidic Biosensor With Functionalized Gold Nano Particles On Interdigitated Electrodes, Bharath Babu Nunna May 2018

Microfluidic Biosensor With Functionalized Gold Nano Particles On Interdigitated Electrodes, Bharath Babu Nunna

Dissertations

The integration of the microfluidics to the biosensor has growing demand with favorable conditions such as reduced processing time and low reagent consumption. The immuno biosensing with the microfluidic platform helped to make the electrochemical biosensing assays portable due to which this sensing mechanism can be easily implemented in point of care devices. The implementation of the biosensing in the microchannels significantly reduces the sample requirement form milli liter (mL) to micro liter (uL), and thus leads to low volume sample requirement during the sensing. The primary factors contributing to the microfluidic biosensors performance are probe immobilization, specific binding and …


Exploiting Click-Chemistry And Microfluidics To Map The Neuronal Itinerary Of App Processing And Amyloid-Beta Generation, Namratha Srinivas May 2018

Exploiting Click-Chemistry And Microfluidics To Map The Neuronal Itinerary Of App Processing And Amyloid-Beta Generation, Namratha Srinivas

McKelvey School of Engineering Theses & Dissertations

Alzheimer’s disease (AD) is a chronic neurodegenerative disease and is the sixth leading cause of death in the United States with approximately 5.5 million Americans diagnosed with it. The neuropathological hallmark includes extracellular senile plaques and intraneuronal neurofibrillary tangles. Recent GWAS studies have identified genes associated with AD, and have revealed several classes of genes implicated in disease pathogenesis. In particular, three general pathways associated with an increased risk of AD included: 1) cholesterol metabolism, innate immune system, and the membrane trafficking. Our lab has focused on intracellular trafficking as it relates to the processing of amyloid precursor protein (APP), …


Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera May 2018

Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera

Graduate Theses and Dissertations

A new microdialysis sampling method and microfluidic device were developed in vitro. The method consisted of using up to four microdialysis sampling probes connected in series to evaluate the relative recovery (RR) of different model solutes methyl orange, fluorescein isothiocyanate (FITC)-dextran average mol. wt. 4,000 (FITC-4), FITC-10, FITC-20, and FITC-40. Different flow rates (0.8, 1.0, and 1.5 µL/min) were used to compare experimentally observed relative recoveries with theoretical estimations. With increasing the number of probes in series, the relative recovery increases and ~100% (99.7% ± 0.9%) relative recovery for methyl orange was obtained. For larger molecules such as fluorescein isothiocyanate …


Sombolestani_Thesis.Pdf, Shayan Sombolestani Apr 2018

Sombolestani_Thesis.Pdf, Shayan Sombolestani

Shayan Sombolestani

In this study, a platform has been developed for making a microfluidic device out of a transparent polymer with high chemical and physical resistance to facilitate visualization experiments for Enhance Oil Recovery (EOR) applications. NOA81 is the most suitable material for this purpose due to the compatibility with a wide variety of organic solvents and high physical and chemical resistance. The NOA81 microfluidic device was designed and fabricated capable of studying three-phase fluid flow in a pore network similar to that of consolidated water wet porous rock. The numerous fabrication steps were partially determined by literature review and further optimized …


Spectro-Electrochemical Platforms For Dynamic Analyses Of Catalytic Cascade Systems, Nalin I. Andersen Apr 2018

Spectro-Electrochemical Platforms For Dynamic Analyses Of Catalytic Cascade Systems, Nalin I. Andersen

Nanoscience and Microsystems ETDs

The development of spectro-electrochemical platforms that facilitate the dynamic analyses of complex catalytic cascade systems was explored in this research. These systems facilitated multiple modalities of catalysts and were used as platforms for monitoring catalytic transformations quasi-in situ. The analytical platforms allowed for the characterization of intermediates and products using surface-enhanced Raman spectroscopy (SERS). The design and fabrication of these devices proved to be reproducible, made of materials that can be manipulated for multiple applications, and incorporate fluid mechanics, electrochemistry, and multimodal catalysis. Microfluidic technology offers capabilities for understanding catalytic cascade systems by providing precise dynamic control of …


Electric-Field Assisted Manipulation And Self-Assembly Of Particle Suspensions, Edison Chijioke Amah Apr 2018

Electric-Field Assisted Manipulation And Self-Assembly Of Particle Suspensions, Edison Chijioke Amah

Dissertations

The aim of this dissertation is to model the processes by which particles suspended in liquids and at liquid surfaces self-assemble when they are subjected to uniform and non-uniform electric fields. To understand the role of electric forces, three related problems were studied numerically and experimentally.

In the first problem, particles are assumed to be suspended inside a liquid and a nonuniform electric field is applied using electrodes mounted in the domain walls which causes positively polarized particles to collect in the regions where the electric field intensity is locally maximal and the negatively polarized particles collect in the regions …


Fabrication And Characterization Of Bubble-Driven Micromixers, Matthew David Rolleston Apr 2018

Fabrication And Characterization Of Bubble-Driven Micromixers, Matthew David Rolleston

Journal of the Microelectronic Engineering Conference

Microfluidics differ from conventional fluid flows in that viscous forces dominate. As a result, microfluidics offer unprecedented control over fluid flows. The precise manipulation of fluids can be applied anywhere from healthcare in medical diagnostics to pharmaceutical companies miniaturizing reactions to reduce reagent consumption. In order to apply microfluidics as a comprehensive solution, unit operations must be performed such as mixing, sorting and dilution. This work investigates the fabrication and characterization of bubble-driven micromixers using inertial micropump technology. Unlike macroscopic fluid flows with turbulence, transport phenomena become restricted in microfluidics. Active mixing approaches apply external forces (such as thermal or …


Multiplexed Optofluidics For Single-Molecule Analysis, Matthew Alan Stott Apr 2018

Multiplexed Optofluidics For Single-Molecule Analysis, Matthew Alan Stott

Theses and Dissertations

The rapid development of optofluidics, the combination of microfluidics and integrated optics, since its formal conception in the early 2000's has aided in the advance of single-molecule analysis. The optofluidic platform discussed in this dissertation is called the liquid core anti-resonant reflecting optical waveguide (LC-ARROW). This platform uses ARROW waveguides to orthogonally intersect a liquid core waveguide with solid core rib waveguides for the excitation of specifically labeled molecules and collection of fluorescence signal. Since conception, the LC-ARROW platform has demonstrated its effectiveness as a lab-on-a-chip fluorescence biosensor. However, until the addition of optical multiplexing excitation waveguides, the platform lacked …


Tumor-Targeted Double Emulsions For Ultrasound-Triggered Delivery Of Molecular Therapeutics., Connor S Centner Apr 2018

Tumor-Targeted Double Emulsions For Ultrasound-Triggered Delivery Of Molecular Therapeutics., Connor S Centner

Electronic Theses and Dissertations

Cancer is the second leading cause of death in the United States, with 1.74 million new cancer cases diagnosed and 610,000 cancer deaths expected in 2018 alone. Current treatments often result in negative systemic effects and ineffective treatment of the tumor. Drug delivery vehicles have been developed for more effective local delivery methods, but many drug delivery vehicles lack spatial and temporal control. Targeted double emulsions are a new class of drug delivery vehicles which present a promising option for a high payload and controlled delivery. The purpose of our project was to develop and characterize an aptamer-chelated double emulsion …


Microfluidic Technology And Application In Urinal Analysis, Jiwen Xiang Feb 2018

Microfluidic Technology And Application In Urinal Analysis, Jiwen Xiang

LSU Doctoral Dissertations

Microfluidic technology offers numerous advantages in minimizing and integrating the traditional assays. However, the lack of efficient control components of the microfluidic systems has been hindering the widely commercialization of the technology. The research work in this dissertation focused on the development of effective control components for microfluidic applications.

A linear peristaltic pump was firstly designed, fabricated, and tested for conventional microfluidics by synchronously compressing the microfluidic channel with a miniature cam-follower system in Chapter 2. The miniature cam-follower system and microfluidic chip was prototyped using three-dimensional (3D) printing technology and soft lithography technology. Results from experimental test showed that …


3d Printed High Density, Reversible, Chip-To-Chip Microfluidic Interconnects, Hua Gong, Adam T. Woolley, Gregory P. Nordin Feb 2018

3d Printed High Density, Reversible, Chip-To-Chip Microfluidic Interconnects, Hua Gong, Adam T. Woolley, Gregory P. Nordin

Faculty Publications

Our latest developments in miniaturizing 3D printed microfluidics [Gong et al., Lab Chip, 2016, 16, 2450; Gong et al., Lab Chip, 2017, 17, 2899] offer the opportunity to fabricate highly integrated chips that measure only a few mm on a side. For such small chips, an interconnection method is needed to provide the necessary world-to-chip reagent and pneumatic connections. In this paper, we introduce simple integrated microgaskets (SIMs) and controlled-compression integrated microgaskets (CCIMs) to connect a small device chip to a larger interface chip that implements world-to-chip connections. SIMs or CCIMs are directly 3D printed as part of the device …


A Graphene-Based Microfluidic Platform For Electrocrystallization And In Situ X-Ray Diffraction, Shuo Sui, Yuxi Wang, Christos Dimitrakopoulos, Sarah L. Perry Jan 2018

A Graphene-Based Microfluidic Platform For Electrocrystallization And In Situ X-Ray Diffraction, Shuo Sui, Yuxi Wang, Christos Dimitrakopoulos, Sarah L. Perry

Chemical Engineering Faculty Publication Series

Here, we describe a novel microfluidic platform for use in electrocrystallization experiments. The device incorporates ultra-thin graphene-based films as electrodes and as X-ray transparent windows to enable in situ X-ray diffraction analysis. Furthermore, large-area graphene films serve as a gas barrier, creating a stable sample environment over time. We characterize different methods for fabricating graphene electrodes, and validate the electrical capabilities of our device through the use of methyl viologen, a redox-sensitive dye. Proof-of-concept electrocrystallization experiments using an internal electric field at constant potential were performed using hen egg-white lysozyme (HEWL) as a model system. We observed faster nucleation and …


The Development Of Microfluidic Devices For The Production Of Safe And Effective Non-Viral Gene Delivery Vectors, Jason Matthew Absher Jan 2018

The Development Of Microfluidic Devices For The Production Of Safe And Effective Non-Viral Gene Delivery Vectors, Jason Matthew Absher

Theses and Dissertations--Chemical and Materials Engineering

Including inherited genetic diseases, like lipoprotein lipase deficiency, and acquired diseases, such as cancer and HIV, gene therapy has the potential to treat or cure afflicted people by driving an affected cell to produce a therapeutic protein. Using primarily viral vectors, gene therapies are involved in a number of ongoing clinical trials and have already been approved by multiple international regulatory drug administrations for several diseases. However, viral vectors suffer from serious disadvantages including poor transduction of many cell types, immunogenicity, direct tissue toxicity and lack of targetability. Non-viral polymeric gene delivery vectors (polyplexes) provide an alternative solution but are …


Collective Chemotaxis Of Retinal Neural Cells From Drosophila Melanogaster In Controlled Microenvironments, Stephanie Zhang Jan 2018

Collective Chemotaxis Of Retinal Neural Cells From Drosophila Melanogaster In Controlled Microenvironments, Stephanie Zhang

Dissertations and Theses

More than 172 million people are influenced by a retinal disorder that stems from either age-related or developmental causes. Of those, 1.5 million people endure a developmental retinal disorder. In the developing retina, neural cells undergo a series of highly complicated differentiation and migration process. A main cause of these diseases is abnormal collective migration of neural progenitors hindering the retinogenesis process. However, our grasp of collective migration and signaling molecules, critical to the developing retina, is incompletely understood. Understanding the molecular mechanisms, such as the fibroblast growth factor pathway, that regulate glial and neuronal migration provides decisive insights in …


Numerical Modeling Of Capillary-Driven Flow In Open Microchannels: An Implication Of Optimized Wicking Fabric Design, Mehrad Gholizadeh Ansari Jan 2018

Numerical Modeling Of Capillary-Driven Flow In Open Microchannels: An Implication Of Optimized Wicking Fabric Design, Mehrad Gholizadeh Ansari

Masters Theses

"The use of microfluidics to transfer fluids without applying any exterior energy source is a promising technology in different fields of science and engineering due to their compactness, simplicity and cost-effective design. In geotechnical engineering, to increase the soil's strength, hydrophilic wicking fibers as type of microfluidics have been employed to transport and drain water out of soil spontaneously by taking advantage of natural capillary force without using any pumps or other auxiliary devices. The objective of this study is to understand the scientific mechanisms of the capability for wicking fiber to drain both gravity and capillary water out of …


Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien Jan 2018

Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien

Dissertations and Theses

In vitro tissue models play an important role in providing a platform that mimics the realistic tissue microenvironment for stimulating and characterizing the cellular behavior. In particular, the hydrogel-based 3D in vitro models allow the cells to grow and interact with their surroundings in all directions, thus better mimicking in vivo than their 2D counterparts. The objective of this thesis is to establish a 3D in vitro model that mimics the anatomical and functional complexity of the realistic cancer microenvironment for conveniently studying the transport coupling in porous tissue structures. We pack uniform-sized PEGDA-GelMA microgels in a microfluidic chip to …


The Microfluidic Intravital Window : A Tool For Manipulation And Imaging Of The Tumor Microenvironment, Logan William Butt Jan 2018

The Microfluidic Intravital Window : A Tool For Manipulation And Imaging Of The Tumor Microenvironment, Logan William Butt

Legacy Theses & Dissertations (2009 - 2024)

The tumor microenvironment (TME) is a heterogeneous collection of both healthy and pathological cells, whose complex interactions hold the key for understanding and overcoming cancer. Metastasis leverages these complex interactions into a sophisticated process by which single cells from the tumor disseminate into the blood and form new colonies in other organ systems. Subsequent formation of tumors throughout the body, as a direct result of metastatic events, is responsible for most deaths related to cancer, making metastasis a necessary target for cancer therapy.