Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2017

Energy

Faculty of Engineering and Information Sciences - Papers: Part A

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Development Of Microencapsulated Phase Change Material For Solar Thermal Energy Storage, Weiguang Su, Jo Darkwa, Georgios Kokogiannakis Jan 2017

Development Of Microencapsulated Phase Change Material For Solar Thermal Energy Storage, Weiguang Su, Jo Darkwa, Georgios Kokogiannakis

Faculty of Engineering and Information Sciences - Papers: Part A

In this paper a novel microencapsulated phase change material (MF-3) has been developed and tested for solar assisted hot water storage systems. Even though the morphology of the sample was affected by the type of emulsifier used for fabrication it recorded the highest energy storage capacity of 126 kJ/kg with encapsulation efficiency of 97.4% as compared with other developed samples. For the purpose of assessing its thermal effectiveness it was theoretically evaluated in a compacted fixed bed TES unit and found to be capable of achieving a higher energy storage density as well as relatively smaller physical storage size than …


Hybrid Model Predictive Control Of A Residential Hvac System With On-Site Thermal Energy Generation And Storage, Massimo Fiorentini, Josh Wall, Zhenjun Ma, Julio H. Braslavsky, Paul Cooper Jan 2017

Hybrid Model Predictive Control Of A Residential Hvac System With On-Site Thermal Energy Generation And Storage, Massimo Fiorentini, Josh Wall, Zhenjun Ma, Julio H. Braslavsky, Paul Cooper

Faculty of Engineering and Information Sciences - Papers: Part A

This paper describes the development, implementation and experimental investigation of a Hybrid Model Predictive Control (HMPC) strategy to control solar-assisted heating, ventilation and air-conditioning (HVAC) systems with on-site thermal energy generation and storage. A comprehensive approach to the thermal energy management of a residential building is presented to optimise the scheduling of the available thermal energy resources to meet a comfort objective. The system has a hybrid nature with both continuous variables and discrete, logic-driven operating modes. The proposed control strategy is organized in two hierarchical levels. At the high-level, an HMPC controller with a 24-h prediction horizon and a …