Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Energy Potentials Of Briquette Produced From Tannery Solid Waste, Olatunde Ajani Oyelaran, Faralu Muhammed Sani, Olawale Monsur Sanusi, Olusegun Balogun, Adeyinka Okeowo Fagbemigun Dec 2017

Energy Potentials Of Briquette Produced From Tannery Solid Waste, Olatunde Ajani Oyelaran, Faralu Muhammed Sani, Olawale Monsur Sanusi, Olusegun Balogun, Adeyinka Okeowo Fagbemigun

Makara Journal of Technology

The vast quantity of waste generated from industries is one of the serious outcomes of unplanned development, resulting into quantum of hazardous organic and inorganic waste generating daily. Proper waste management is a challenging issue that must be addressed adequately. This is, therefore, carried out with a view of assessing the energy and combustion quality of tannery solid waste with a view of converting them into briquettes for cooking, heating and small home industries and reducing the menace caused by tannery waste disposal. The results of the experiments showed that the combustion rate ranged between 0.171 and 0.217 g/min, the …


Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin Aug 2017

Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin

Faculty Publications

Using static and dynamic density functional theory (DFT) methods with a cluster model of [(Li2CO3)8H]+, the mechanism and kinetics of proton transfer in lithium molten carbonate (MC) were investigated. The migration of proton prefers an inter-carbonate pathway with an energy barrier of 8.0 kcal/mol at the B3LYP/6-31 G(d,p) level, which is in good agreement with the value of 7.6 kcal/mol and 7.5 kcal/mol from experiment and FPMD simulation, respectively. At transition state (TS), a linkage of O–H–O involving O 2p and H 1 s orbitals is formed between two carbonate ions. The calculated trajectory of H indicates that proton has …


Visualization And 3d Printing Of A 3d Solar Tracker Model Using Mayavi And Pov-Ray, Aditya Mehra Aug 2017

Visualization And 3d Printing Of A 3d Solar Tracker Model Using Mayavi And Pov-Ray, Aditya Mehra

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

In this work, we have created a realistic model of a solar tracker using Mayavi: 3D scientific data visualization and plotting in Python, Enthought Canopy:a comprehensive Python analysis environment and Persistence of Vision Ray Tracer, or POV-Ray, a ray tracing program which generates photo-realistic images from a text-based scene description, a model of the solar tracker was also 3D printed.


Energy From Thin Air: Compressed Air Power Harvesting Systems, Zachary Sadler, Matthew Jones Mar 2017

Energy From Thin Air: Compressed Air Power Harvesting Systems, Zachary Sadler, Matthew Jones

Journal of Undergraduate Research

Energy is an important resource within the world we live. The demand for power requires new energy resources. Much of the power that is generated is eventually wasted in the form of waste heat. As much as 435 GW of energy is transferred from virtually all energy conversion devices and processes to the atmosphere as wasted heat [1]. Converting as much as one percent of this waste heat into electrical power would eliminate the need for 18 average size (236 MW) [2] coal red power plants. A significant portion of this waste heat production is due to air compression …


Nsf Energy - Pico-Grid Smart Homes Power Management System, Aaron Specht, Shaina Neal Jan 2017

Nsf Energy - Pico-Grid Smart Homes Power Management System, Aaron Specht, Shaina Neal

ENERGY Research and Lesson Plans

No abstract provided.


Careers In Engineering Lesson Plan, Lindsay Snowden Jan 2017

Careers In Engineering Lesson Plan, Lindsay Snowden

ENERGY Research and Lesson Plans

Careers in Engineering Lesson Plan. The activity is to create a version of a robotic hand with the supplies provided,


Power House Sustainable Energy Education, Rachael Grillo, Molly Hopper, Laura Mills Jan 2017

Power House Sustainable Energy Education, Rachael Grillo, Molly Hopper, Laura Mills

ENERGY Research and Lesson Plans

No abstract provided.


Module 2: Solar Powered Cricket Lab & Engineering Guest Speaker, Lindsay Snowden Jan 2017

Module 2: Solar Powered Cricket Lab & Engineering Guest Speaker, Lindsay Snowden

ENERGY Research and Lesson Plans

Students will participate in a Solar Panel Cricket lab to determine which environmental condition would allow for the solar panel to produce the most power. The three conditions are inside, inside with a flashlight, or outside in the sun. The students will complete a correlating lab worksheet. Students will also ask questions and hold discussions with the guest speaker. Students will actively participate while the guest speaker is presenting.


Renewable Energy, Keith Bazemore Jan 2017

Renewable Energy, Keith Bazemore

ENERGY Research and Lesson Plans

Lesson Plan for Renewable Energy- Environmental Science.


Wind Energy, Bob Deckard, Jaimee Howard Jan 2017

Wind Energy, Bob Deckard, Jaimee Howard

ENERGY Research and Lesson Plans

No abstract provided.


Suspended Graphene-Based Gas Sensor With 1-Mw Energy Consumption, Jong-Hyun Kim, Qin Zhou, Jiyoung Chang Jan 2017

Suspended Graphene-Based Gas Sensor With 1-Mw Energy Consumption, Jong-Hyun Kim, Qin Zhou, Jiyoung Chang

Department of Mechanical and Materials Engineering: Faculty Publications

This paper presents NH3 sensing with ultra-low energy consumption for fast recovery and a graphene sheet based on a suspended microheater. Sensitivity and repeatability are important characteristics of functional gas sensors embedded in mobile devices. Moreover, low energy consumption is an essential requirement in flexible and stretchable mobile electronics due to their small dimension and fluctuating resistivity during mechanical behavior. In this paper, we introduce a graphene-based ultra-low power gas detection device with integration of a suspended silicon heater. Dramatic power reduction is enabled by a duty cycle while not sacrificing sensitivity. The new oscillation method of heating improves …