Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2017

Autonomous

Discipline
Institution
Publication
Publication Type

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Using Unmanned Aerial Vehicles For Wireless Localization In Search And Rescue, Virgilio Acuna Nov 2017

Using Unmanned Aerial Vehicles For Wireless Localization In Search And Rescue, Virgilio Acuna

FIU Electronic Theses and Dissertations

This thesis presents how unmanned aerial vehicles (UAVs) can successfully assist in search and rescue (SAR) operations using wireless localization. The zone-grid to partition to capture/detect WiFi probe requests follows the concepts found in Search Theory Method. The UAV has attached a sensor, e.g., WiFi sniffer, to capture/detect the WiFi probes from victims or lost people’s smartphones. Applying the Random-Forest based machine learning algorithm, an estimation of the user's location is determined with a 81.8% accuracy.

UAV technology has shown limitations in the navigational performance and limited flight time. Procedures to optimize these limitations are presented. Additionally, how the UAV …


Performance Analysis Of Constant Speed Local Abstacle Avoidance Controller Using A Mpc Algorithym On Granular Terrain, Nicholas Haraus Oct 2017

Performance Analysis Of Constant Speed Local Abstacle Avoidance Controller Using A Mpc Algorithym On Granular Terrain, Nicholas Haraus

Master's Theses (2009 -)

A Model Predictive Control (MPC) LIDAR-based constant speed local obstacle avoidance algorithm has been implemented on rigid terrain and granular terrain in Chrono to examine the robustness of this control method. Provided LIDAR data as well as a target location, a vehicle can route itself around obstacles as it encounters them and arrive at an end goal via an optimal route. This research is one important step towards eventual implementation of autonomous vehicles capable of navigating on all terrains. Using Chrono, a multibody physics API, this controller has been tested on a complex multibody physics HMMWV model representing the plant …


Event And Time-Triggered Control Module Layers For Individual Robot Control Architectures Of Unmanned Agricultural Ground Vehicles, Tyler Troyer Oct 2017

Event And Time-Triggered Control Module Layers For Individual Robot Control Architectures Of Unmanned Agricultural Ground Vehicles, Tyler Troyer

Department of Biological Systems Engineering: Dissertations and Theses

Automation in the agriculture sector has increased to an extent where the accompanying methods for unmanned field management are becoming more economically viable. This manifests in the industry’s recent presentation of conceptual cab-less machines that perform all field operations under the high-level task control of a single remote operator. A dramatic change in the overall workflow for field tasks that historically assumed the presence of a human in the immediate vicinity of the work is predicted. This shift in the entire approach to farm machinery work provides producers increased control and productivity over high-level tasks and less distraction from operating …


Modeling Autonomous Vehicles Through Radio Controlled Cars, Eva S. Chen Jun 2017

Modeling Autonomous Vehicles Through Radio Controlled Cars, Eva S. Chen

Computer Engineering

Autonomous vehicles have a lot of potential in improving people’s everyday lives. They could reduce congestion, reduce collisions, enhance mobility, and more. But with these benefits come security and privacy risks. In order to research and test some of these risks, we are building a set of scale autonomous cars that can model autonomous and collaborative behaviors. One such behaviour would be platooning, where a group of vehicles can travel closely together at high speeds by following a lead car. We are doing this with various sensors and control algorithms to allow for future modularity.


Review Of Assistive Devices For Electric Powered Wheelchairs Navigation, K. Arshak, D. Buckley, K. Kaneswaran May 2017

Review Of Assistive Devices For Electric Powered Wheelchairs Navigation, K. Arshak, D. Buckley, K. Kaneswaran

The ITB Journal

The decreasing costs of microprocessor systems and increasing range of “Smart Sensors” have led to a boom in Assistive Device Technology. The annual rate of expenditure for mobility related devices has reached $1 billion dollars in the United States alone. The industries current focus is to develop a wider range of Independent Mobility Controllers to allow, even the most severely disabled person, the ability to control an Electric Powered Wheelchair (EPW). Advances in Autonomous Robot Design have led to corresponding improvements in EPW technology. This paper outlines user interfaces and input device technologies used at present to navigate an EPW.


Semi-Autonomous Golf Cart, Daniel T. Garza, Richard S. Emeott, Matthew E. May, Valerie A. Cherry, Brooke Davidson May 2017

Semi-Autonomous Golf Cart, Daniel T. Garza, Richard S. Emeott, Matthew E. May, Valerie A. Cherry, Brooke Davidson

Chancellor’s Honors Program Projects

No abstract provided.


Models For Pedestrian Trajectory Prediction And Navigation In Dynamic Environments, Jeremy N. Kerfs May 2017

Models For Pedestrian Trajectory Prediction And Navigation In Dynamic Environments, Jeremy N. Kerfs

Master's Theses

Robots are no longer constrained to cages in factories and are increasingly taking on roles alongside humans. Before robots can accomplish their tasks in these dynamic environments, they must be able to navigate while avoiding collisions with pedestrians or other robots. Humans are able to move through crowds by anticipating the movements of other pedestrians and how their actions will influence others; developing a method for predicting pedestrian trajectories is a critical component of a robust robot navigation system. A current state-of-the-art approach for predicting pedestrian trajectories is Social-LSTM, which is a recurrent neural network that incorporates information about neighboring …


Opening Autonomous Airspace–A Prologue, Samuel M. Vance Apr 2017

Opening Autonomous Airspace–A Prologue, Samuel M. Vance

International Journal of Aviation, Aeronautics, and Aerospace

The proliferation of Unmanned Aerial Vehicles (UAV), and in particular small Unmanned Aerial Systems (sUAS), has significant operational implications for the Air Traffic Control (ATC) system of the future. Integrating unmanned aircraft safely presents long-standing challenges, especially during the lengthy transition period when unmanned vehicles will be mixed with piloted vehicles. Integration of dissimilar systems is not an easy, straight-forward task and in this case is complicated by the difficulty to truly know what is present in the airspace. Additionally, there are significant technology, security and liability issues that will need resolution to ensure property and life are protected and …


Design And Control Of A Dynamic And Autonomous Trackless Vehicle Using Onboard And Environmental Sensors, Scott R. Jagolinzer Mar 2017

Design And Control Of A Dynamic And Autonomous Trackless Vehicle Using Onboard And Environmental Sensors, Scott R. Jagolinzer

FIU Electronic Theses and Dissertations

The purpose of this thesis is to explore the current state of automated guided vehicles (AGVs), sensors available for the vehicles to be equipped with, control systems for the vehicles to run on, and wireless technology to connect the whole system together. With a technological push towards increasing automation and maximizing the possible throughput of systems, automated technology needs to improve for trackless and wireless systems such as vehicles that can be used to move loads in a vast array of applications.

The goal of this research is to develop and propose improvements in both vehicle and control system design …


Collaborative Collective Algorithms To Coordinate Ugvs, Kyle Archuleta, Christopher Lucas, Brian Richardson, Michael Stewart Jan 2017

Collaborative Collective Algorithms To Coordinate Ugvs, Kyle Archuleta, Christopher Lucas, Brian Richardson, Michael Stewart

Capstone Design Expo Posters

Sentel/Brilliant Innovations has developed autonomous UGVs (unmanned ground vehicles) capable of generating a map of an unknown location through exploration using local software and the power of Google Tango technology. This project was tasked with developing an efficient and capable map-stitching solution allowing multiple UGVs to coordinate their movements and share information in order to greatly improve the speed at which these drones can be used to generate maps. The solution utilizes the processing power of a Raspberry Pi to pull maps from a Redis server and stitch them together. Once stitched, the maps are redistributed via the Redis server …


Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven Jan 2017

Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven

Theses and Dissertations--Mechanical Engineering

This thesis presents a real-time autonomous guidance and control method for a quadrotor in a GPS-denied environment. The quadrotor autonomously seeks a destination while it avoids obstacles whose shape and position are initially unknown. We implement the obstacle avoidance and destination seeking methods using off-the-shelf sensors, including a vision-sensing camera. The vision-sensing camera detects the positions of points on the surface of obstacles. We use this obstacle position data and a potential-field method to generate velocity commands. We present a backstepping controller that uses the velocity commands to generate the quadrotor's control inputs. In indoor experiments, we demonstrate that the …


Relative Cross Track Error Calculations In Asabe/Iso 12188-2:2012 And Power/Energy Analysis Using A 20 Hp Tractor On A Fully Electric Drivetrain, Joseph D. Rounsaville Jan 2017

Relative Cross Track Error Calculations In Asabe/Iso 12188-2:2012 And Power/Energy Analysis Using A 20 Hp Tractor On A Fully Electric Drivetrain, Joseph D. Rounsaville

Theses and Dissertations--Biosystems and Agricultural Engineering

ASABE/ISO Standard 12188-2 provides test procedures for positioning and guidance systems in agricultural vehicles during straight and level travel. The standard provides excellent descriptions of test procedures, however it does not provide detail on methods to carry out the calculations necessary to calculate relative cross-track error (XTE), which is the primary measurement used to judge accuracy of the system. The standard was used to estimate the guidance accuracy of a relatively low-accuracy vehicle at 1.25 and 0.5 m s-1. At 1.25 m s-1, a nearest point calculation overestimated mean XTE by 0.8 cm, or 8.2%. The …


Advancing Intersection Management By Utilizing Cost Effective Intelligent Vehicle Concepts And Vehicle-To-Infrastructure Communication Techniques, Bernard O. Ibru Jan 2017

Advancing Intersection Management By Utilizing Cost Effective Intelligent Vehicle Concepts And Vehicle-To-Infrastructure Communication Techniques, Bernard O. Ibru

Electronic Theses and Dissertations

Intelligent Transport Systems (ITS) is a growing field of research which focuses on the alleviation of traffic congestion and road accidents caused by miscommunication or confusion of human drivers. Intelligent Intersection Management is a subdivision of ITS which focuses on the seamless management of vehicles arriving at, traversing and exiting intersections to prevent congestion and collision within or around the intersection. This research sought to develop a cost effective method of implementing wireless Vehicle-to-Infrastructure (V2I) communication based Intelligent Intersection Management, by employing the use of 1:4.5 scale version autonomous vehicle prototypes, on a similarly scaled four-way intersection. This was accomplished …


Hovercam, Kevin Rauh, Ross Palenik Jan 2017

Hovercam, Kevin Rauh, Ross Palenik

Williams Honors College, Honors Research Projects

Quadcopters are widely used in recreational areas and often have video cameras mounted to them. The Hovercam increases the range of usefulness of quadcopters and allow the user to record him or herself while performing any task. The Hovercam will use GPS to track and follow a target. A smartphone application will be used to control the Hovercam in its basic functions of taking off, hovering, and landing.


Packmule, Jared M. Alexander, Jared J. Ford, Timothy J. Griffiths, Andray Pennington Jan 2017

Packmule, Jared M. Alexander, Jared J. Ford, Timothy J. Griffiths, Andray Pennington

Williams Honors College, Honors Research Projects

People face demands of hauling equipment and belongings with them every day, whether it be for work or leisure. This design report discusses and details a product that would allow people to overcome the struggles of this. The Packmule is an autonomous following robot that has the capability of carrying a load up to 30 pounds. The design involves two independently controlled motors operating two drive wheels so that the Packmule will be flexible in the directions it can move. There are also two more steering wheels for support of the base and the load inside. The way in which …


Autonomous Driving Platform Performance Analysis, Charles R. Rickarby Jan 2017

Autonomous Driving Platform Performance Analysis, Charles R. Rickarby

Honors Theses and Capstones

Through data analysis of various plots and figures it will be possible to determine the best control parameters to get the best performance out of the autonomous driving platform. This data, presented in this thesis, will show quantitatively what the best control strategies are through comparison of different versions of the platform.