Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2017

Theses/Dissertations

Additive manufacturing

Discipline
Institution
Publication

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Formulation Of Uv Curable Resins Utilized In Vat Photo Polymerization For The Additive Manufacturing Of Gun Propulsion Charge In 3d Printers, David T. Bird Dec 2017

Formulation Of Uv Curable Resins Utilized In Vat Photo Polymerization For The Additive Manufacturing Of Gun Propulsion Charge In 3d Printers, David T. Bird

Theses

Formulating resins for Additive Manufacturing (AM), utilizing UV laser stereolithography, is a new technique that makes it possible for the fabrication of complex geometries with high dimensional resolution. This layer by layer photopolymerization approach spans various industrial sectors from adhesives, inks and optical fibers to nanotechnology and biomaterials. UV curable resins such as epoxides, vinyl ethers and other acrylates are important monomers that offer effective mediums for energetic materials, and the potential exists to develop environmentally friendly formulations with suspended energetic materials at various solids loading levels.

Developing techniques for UV curing formulations of highly loaded energetic suspensions is a …


Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders Dec 2017

Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders

Electronic Theses and Dissertations

The purpose of this research was to investigate the use of cellulose nanofibers (CNF) compounded into an impact modified polypropylene (IMPP) matrix. A IMPP was used because it shrinks less than a PP homopolymer during FLM processing. An assessment of material properties from fused layer modeling (FLM), an additive manufacturing (AM) method, and injection molding (IM) was conducted. Results showed that material property measurements in neat PP were statistically similar between IM and FLM for density, strain at yield and flexural stiffness. Additionally, PP plus the coupling agent maleic anhydride (MA) showed statistically similar results in comparison of IM and …


Direct Digital Manufacturing Of Multi-Layer Wideband Ku-Band Patch Antennas, Merve Kacar Nov 2017

Direct Digital Manufacturing Of Multi-Layer Wideband Ku-Band Patch Antennas, Merve Kacar

USF Tampa Graduate Theses and Dissertations

Design and performance of fully-printed Ku-band aperture coupled patch antennas fabricated by a direct digital manufacturing (DDM) approach that integrates fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) thermoplastic with in-situ micro-dispensing of conductive silver paste (CB028) are reported. Microstrip line characterizations are performed and demonstrate that misalignment of ABS substrate deposition direction with microstrip line micro-dispensing direction can degrade the effective conductivity up to 60% within the Ku-band, and must be taken into consideration in antenna array feed network designs. Specically, over 125 µm thick ABS substrate, RF loss of 0.052 dB/mm is obtained at 18 GHz, demonstrating …


3d Printing Of 316l Stainless Steel And Its Effect On Microstructure And Mechanical Properties, Rawn Penn Oct 2017

3d Printing Of 316l Stainless Steel And Its Effect On Microstructure And Mechanical Properties, Rawn Penn

Graduate Theses & Non-Theses

Laser powder bed fusion or 3D printing is a potential candidate for net shape forming and manufacturing complex shapes. Understanding of how various parameters affect build quality is necessary. Specimens were made from 316L stainless steel at 0°, 30°, 60°, and 90° angles measured from the build plate. Three tensile and four fatigue specimens at each angle were produced. Fracture morphology investigation was performed to determine the fracture mode of specimens at each build angle. Microstructural analysis was performed on one of each orientation. The average grain size of the samples was marginally influenced by the build angle orientation. Tensile …


Additive Manufacturing Process Of 3d Polyaniline Transducers Via Direct Ink Writing, Frederick Benjamin Holness Aug 2017

Additive Manufacturing Process Of 3d Polyaniline Transducers Via Direct Ink Writing, Frederick Benjamin Holness

Electronic Thesis and Dissertation Repository

Electroactive polymers exhibit a change in properties, typically size or shape, in response to electrical stimuli. One class of electroactive polymer of particular interest are the conjugated polymers, whose conjugated backbone structure imparts electrical conductivity. However, this structure imposes processing limitations restricting their form to 2D structures. To overcome this, we develop specially formulated polyaniline- based blends via counter-ion induced thermal doping for the fabrication of 3D conductive structures via direct ink writing. This approach employs multi-material extrusion for the production of structures with passive and active features, rapid device fabrication, and improved design freedom. A model of the thermal …


Crack Healing In 304l Stainless Steel Using Additive Manufacturing And Friction Stir Processing (Fsp), Cameron Scott Gygi Aug 2017

Crack Healing In 304l Stainless Steel Using Additive Manufacturing And Friction Stir Processing (Fsp), Cameron Scott Gygi

Theses and Dissertations

Continuing an investigation on using FSP to heal stress corrosion cracks (SCC) in welds on nuclear reactors, this study seeks to use AM in addition to FSP to aid crack repair. Previous studies address that current repair technology on nuclear reactors involves the use of TIG welding which can allow helium atoms to aggregate and form voids at the grain boundaries. This weakens the material and renders the repair ineffective. Another previous study evaluated the effectiveness of FSP alone in repairing SCC which did have defects depending on the parameters used during FSP. This study evaluated the use of AM …


High Performance Digitally Manufactured Microwave And Millimeter-Wave Circuits And Antennas, Eduardo A. Rojas Jun 2017

High Performance Digitally Manufactured Microwave And Millimeter-Wave Circuits And Antennas, Eduardo A. Rojas

USF Tampa Graduate Theses and Dissertations

The potential of Additive Manufacturing (AM) for microwave and mm-wave applications is increasingly being revealed thanks to recent advancements in research. AM empowers engineers with new capabilities to manufacture complex conformal geometries quicker and at lower costs. It allows, for instance, the embedding of RF front ends into functional structures. In this dissertation, two aspects of AM are explored: (a) The development and characterization of techniques that improve the performance of AM microwave circuits and antennas, and (b) study of complex geometries, such as meshed structures, as an alternative to reduce material usage, cost, and weight of the components.

Micro-dispensing …


Feasibility Of Using 3d Printed Molds For Thermoforming Thermoplastic Composites, Sunil Bhandari May 2017

Feasibility Of Using 3d Printed Molds For Thermoforming Thermoplastic Composites, Sunil Bhandari

Electronic Theses and Dissertations

This thesis presents a novel combined experimental and numerical mechanics approach for characterizing 3D printed thermoplastic materials by the fused deposition modeling process for thermoforming thermoplastic composites. The implications of this work are:

  1. a methodology for model-based performance evaluation of 3D printed structural parts, and
  2. an improved design of 3D printed molds for composites manufacturing, which has potential for material innovations and scaled-up applications in additive manufacturing.

The thesis formulates basic criteria for selection of thermoplastic polymer used for the 3D printed mold based on forming temperatures. The thesis creates a lattice and shell finite element model of the 3D …


Viability Of Additive Manufacturing For Production And Tooling Applications: A Development Of The Business Case, Christopher Charles Griffin May 2017

Viability Of Additive Manufacturing For Production And Tooling Applications: A Development Of The Business Case, Christopher Charles Griffin

Masters Theses

As marketplace competition drives industrial innovation to increase product value and decrease production costs, emerging technologies foster a new era through Industry 4.0. One aspect of the movement, additive manufacturing, or 3D [three-dimensional] printing, contains potential to revolutionize traditional manufacturing techniques and approach to design. However, uncertainties within the processes and high investment costs deter corporations from implementing and developing the technology. While several industries are benefitting from additive manufacturing’s current state, as the technology continues to progress, more companies will need to evaluate it for industrial viability and adoption. As such, there exists a need for a framework to …


Analysis Of Additively Manufactured Lattice Structures Using Finite Element Methods, Christopher A. Box Mar 2017

Analysis Of Additively Manufactured Lattice Structures Using Finite Element Methods, Christopher A. Box

Theses and Dissertations

Additive Manufacturing (AM) processes are well known for their ability to fabricate parts with complex geometries. Lattice structures leverage this ability to create parts with high strength-to-weight ratio and other desirable structural qualities. This research presents a parameterized modeling tool using common Finite Element Analysis (FEA) and scripting software with which aggregated lattice structures can be analyzed, given different geometric properties and loading conditions. A full factorial Design of Experiments is run to explore the effects of various parameters on the strength of lattice structures. Experimental compressive strength results from three FDM-produced PLA lattices are discussed and compared to predictions …


Development Of Low Alloy Steel By Direct Metal Laser Sintering, Elias Jelis Jan 2017

Development Of Low Alloy Steel By Direct Metal Laser Sintering, Elias Jelis

Dissertations

The US Department of Defense is interested in developing, understanding, and optimizing process parameters for low alloy (4340/4140 steel) for the powder bed fusion process. Low alloy steel is used in parts where high strength and toughness are required. During parameter optimization, several aspects of the process are investigated. Powder size and morphology optimization is important for manufacturability because adequate packing is required to produce full density components. Microstructure evaluation is used in order to provide insight into parameters that lead to optimal mechanical performance and recoating performance. Influence of residual stress is evaluated with this process. Large thermal stress …


Process Parameter Optimization With Numerical Modelling And Experimentation Design Of Binder Jet Additive Manufacturing, Sairam Vangapally Jan 2017

Process Parameter Optimization With Numerical Modelling And Experimentation Design Of Binder Jet Additive Manufacturing, Sairam Vangapally

All Graduate Theses, Dissertations, and Other Capstone Projects

Binder jetting technology is an additive manufacturing technology in which powder materials are binded together layer by layer forming the product from input CAD model. The process involves printing the product layer by layer, curing and sintering. The mechanical properties of 3D printed samples varies based on process parameters, hence there is a need to tune the process parameters for optimal characteristics. Three main parameters namely layer thickness, sintering time and sintering temperature were identified and the study focuses on the effect of parameters on dimensional accuracy and compressive strength of the samples. Full factorial experimental approach was used to …


Variable Oxidation & Defects In Ti-6al-4v Material In Electron Beam Melting Additive Manufacturing, Edward Patton Clark Jan 2017

Variable Oxidation & Defects In Ti-6al-4v Material In Electron Beam Melting Additive Manufacturing, Edward Patton Clark

Electronic Theses and Dissertations

Powder-based metal in additive manufacturing (AM) is advantageous for rapid prototyping of parts and components, with the benefit of reusing powder to reduce production costs. A common driver in the aerospace industry is free-form complex geometries which can be created using CAD software to optimize specifications with strength-to-weight ratios in components. Weight optimization of aircraft components using additive manufacturing reduces material, which significantly reduces production cost in comparison to cast and wrought metallic products. Large biomedical and aerospace industries heavily invest in feedstock metal powders that have low density under structural stresses and high temperatures, resulting in superior resistance to …


Process Development And Characterization Of Smart Parts Fabricated Using Powder Bed Fusion Additive Manufacturing Technologies, Mohammad Shojib Hossain Jan 2017

Process Development And Characterization Of Smart Parts Fabricated Using Powder Bed Fusion Additive Manufacturing Technologies, Mohammad Shojib Hossain

Open Access Theses & Dissertations

The fields of modern energy conversion, e.g., fossil fuel, natural gas, and coal power plants, are in increased need of health monitoring and data collection (temperature, pressure, and flow rate) to improve process efficiency and satisfy the demand for clean energy. In situ process monitoring can lead to a robust automated system to achieve the goal. The monitoring equipment or sensors in energy systems components (e.g., pressure tube, turbine blade, and fuel injector) undergo high temperature, high pressure, and corrosive environments; for example, combustion inlet conditions can reach up to 810 K and 2760 kPa [1]. Therefore, a reliable, accurate, …


The Effects Of Fiber Orientation And Volume Fraction Of Fiber On Mechanical Properties Of Additively Manufactured Composite Material, Suresh Chandra Kuchipudi Jan 2017

The Effects Of Fiber Orientation And Volume Fraction Of Fiber On Mechanical Properties Of Additively Manufactured Composite Material, Suresh Chandra Kuchipudi

All Graduate Theses, Dissertations, and Other Capstone Projects

Additive manufacturing (AM) also known as 3D printing has tremendous advancements in recent days with a vast number of applications in industrial, automotive, architecture, consumer projects, fashion, toys, food, art, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. Recently, additive manufacturing technology, a rapidly growing innovative technology, has gained lot of importance in making composite materials. The properties of composite materials depend upon the properties of constituent’s matrix and fiber. There is lot of research on effect of fiber orientation on mechanical properties of composite materials made using conventional manufacturing …


Repair Of Metallic Components Using Hybrid Manufacturing, Renwei Liu Jan 2017

Repair Of Metallic Components Using Hybrid Manufacturing, Renwei Liu

Doctoral Dissertations

"Many high-performance metal parts users extend the service of these damaged parts by employing repair technology. Hybrid manufacturing, which includes additive manufacturing (AM) and subtractive manufacturing, provides greater build capability, better accuracy, and surface finish for component repair. However, most repair processes still rely on manual operations, which are not satisfactory in terms of time, cost, reliability, and accuracy. This dissertation aims to improve the application of hybrid manufacturing for repairing metallic components by addressing the following three research topics. The first research topic is to investigate and develop an efficient best-fit and shape adaption algorithm for automating 3D models' …