Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Direct Synthesis Of Methane From Co2-H2O Co-Electrolysis In Tubular Solid Oxide Electrolysis Cells, Long Chen, Fanglin Chen, Changrong Xia Dec 2014

Direct Synthesis Of Methane From Co2-H2O Co-Electrolysis In Tubular Solid Oxide Electrolysis Cells, Long Chen, Fanglin Chen, Changrong Xia

Faculty Publications

Directly converting CO2 to hydrocarbons offers a potential route for carbon-neutral energy technologies. Here we report a novel design, integrating the high-temperature CO2–H2O co-electrolysis and low-temperature Fischer–Tropsch synthesis in a single tubular unit, for the direct synthesis of methane from CO2 with a substantial yield of 11.84%.


A Sensitive Film Structure Improvement Of Reduced Graphene Oxide Based Resistive Gas Sensors, Yong Zhou, Guangzhong Xie, Tao Xie, Huan Yuan, Huiling Tai, Yadong Jiang, Zhi Chen Jul 2014

A Sensitive Film Structure Improvement Of Reduced Graphene Oxide Based Resistive Gas Sensors, Yong Zhou, Guangzhong Xie, Tao Xie, Huan Yuan, Huiling Tai, Yadong Jiang, Zhi Chen

Electrical and Computer Engineering Faculty Publications

This study was focused on how to improve the gas sensing properties of resistive gas sensors based on reduced graphene oxide. Sol-airbrush technology was utilized to prepare reduced graphene oxide films using porous zinc oxide films as supporting materials mainly for carbon dioxide sensing applications. The proposed film structure improved the sensitivity and the response/recovery speed of the sensors compared to those of the conventional ones and alleviated the restrictions of sensors' performance to the film thickness. In addition, the fabrication technology is relatively simple and has potential for mass production in industry. The improvement in the sensitivity and the …


Simultaneous Measurement Of Temperature And Pressure With Cascaded Extrinsic Fabry-Perot Interferometer And Intrinsic Fabry-Perot Interferometer Sensors, Yinan Zhang, Jie Huang, Xinwei Lan, Lei Yuan, Hai Xiao Jun 2014

Simultaneous Measurement Of Temperature And Pressure With Cascaded Extrinsic Fabry-Perot Interferometer And Intrinsic Fabry-Perot Interferometer Sensors, Yinan Zhang, Jie Huang, Xinwei Lan, Lei Yuan, Hai Xiao

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents an approach for simultaneous measurement of temperature and pressure using miniaturized fiber inline sensors. The approach utilizes the cascaded optical fiber inline intrinsic Fabry-Perot interferometer and extrinsic Fabry-Perot interferometer as temperature and pressure sensing elements, respectively. A CO2 laser was used to create a loss between them to balance their reflection power levels. The multiplexed signals were demodulated using a Fast Fourier transform-based wavelength tracking method. Experimental results showed that the sensing system could measure temperature and pressure unambiguously in a pressure range of 0 to 6.895 x 105 Pa and a temperature range from …


Chemical And Hydrodynamic Mechanisms For Long-Term Geological Carbon Storage, Susan J. Altman, Wen Deng, For Full List Of Authors, See Publisher's Website. May 2014

Chemical And Hydrodynamic Mechanisms For Long-Term Geological Carbon Storage, Susan J. Altman, Wen Deng, For Full List Of Authors, See Publisher's Website.

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Geological storage of CO₂ (GCS), also referred to as carbon sequestration, is a critical component for decreasing anthropogenic CO₂ atmospheric emissions. Stored CO₂ will exist as a supercritical phase, most likely in deep, saline, sedimentary reservoirs. Research at the Center for Frontiers of Subsurface Energy Security (CFSES), a Department of Energy, Energy Frontier Research Center, provides insights into the storage process. The integration of pore-scale experiments, molecular dynamics simulations, and study of natural analogue sites has enabled understanding of the efficacy of capillary, solubility, and dissolution trapping of CO₂ for GCS. Molecular dynamics simulations provide insight on relative wetting of …


Co2 Recycling Using Microalgae For The Production Of Fuels, Michael H. Wilson, John Groppo, Andrew Placido, S. Graham, S. A. Morton Iii, Eduardo Santillan-Jimenez, Aubrey Shea, Mark Crocker, Czarena Crofcheck, Rodney Andrews Mar 2014

Co2 Recycling Using Microalgae For The Production Of Fuels, Michael H. Wilson, John Groppo, Andrew Placido, S. Graham, S. A. Morton Iii, Eduardo Santillan-Jimenez, Aubrey Shea, Mark Crocker, Czarena Crofcheck, Rodney Andrews

Center for Applied Energy Research Faculty and Staff Publications

CO2 capture and recycle using microalgae was demonstrated at a coal-fired power plant (Duke Energy’s East Bend Station, Kentucky). Using an in-house designed closed loop, vertical tube photobioreactor, Scenedesmus acutus was cultured using flue gas as the CO2 source. Algae productivity of 39 g/(m2 day) in June–July was achieved at significant scale (18,000 L), while average daily productivity slightly in excess of 10 g/(m2 day) was demonstrated in the month of December. A protocol for low-cost algae harvesting and dewatering was developed, and the conversion of algal lipids—extracted from the harvested biomass—to diesel-range hydrocarbons via catalytic …


A Sustainable Remediation Approach For Complete Destruction Of Chloroethanes In Groundwater, Michael Joseph Cheatham Jan 2014

A Sustainable Remediation Approach For Complete Destruction Of Chloroethanes In Groundwater, Michael Joseph Cheatham

LSU Master's Theses

An up-flow column study was operated in a greenhouse composed of a sand/peat mixed media to investigate the effectiveness of an aerobic zone on the disappearances of chloroethane. The oxygen was supplied by mean of porous Silastic tubing under pressure with a breathing air gas cylinder. Chloroethane was generated via reductive dechlorination of 1,1,1-trichloroethane (TCA) and 1,1-dichloroethane (DCA) in anaerobic bioreactors (ABRs). The columns study was conducted with two duplicate reactors (operated in parallel) that underwent separate perturbations of breathing air introduction. Aqueous samples were collected in 160 mL microcosm bottles and analyzed on a GC equipped with a Flame …