Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Modeling The Effect Of Apc Truncation On Destruction Complex Function In Colorectal Cancer Cells, Dipak Barua, William S. Hlavacek Sep 2013

Modeling The Effect Of Apc Truncation On Destruction Complex Function In Colorectal Cancer Cells, Dipak Barua, William S. Hlavacek

Chemical and Biochemical Engineering Faculty Research & Creative Works

In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of β-catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, β-catenin, serine/threonine kinases, and other proteins. The kinases CK1α and GSK-3β, which are recruited by Axin, mediate phosphorylation of β-catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of β-catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of a …


Microwave Assisted Reconstruction Of Optical Interferograms For Distributed Fiber Optic Sensing, Jie Huang, Lei Hua, Xinwei Lan, Tao Wei, Hai Xiao Jul 2013

Microwave Assisted Reconstruction Of Optical Interferograms For Distributed Fiber Optic Sensing, Jie Huang, Lei Hua, Xinwei Lan, Tao Wei, Hai Xiao

Electrical and Computer Engineering Faculty Research & Creative Works

This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The …


Effect Of Ph On The Synthesis Of Cuo Nanosheets By Quick Precipitation Method, Mahdi Shahmiri Mar 2013

Effect Of Ph On The Synthesis Of Cuo Nanosheets By Quick Precipitation Method, Mahdi Shahmiri

mahdi shahmiri

In this paper, copper oxide nanosheets were successfully fabricated in polyvinylpyrrolidone (PVP) via a quick precipitation method. The synthesized CuO nanostructures were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy, energy dispersive analysis of X-ray, and Fourier transform infrared (FT-IR) spectroscopy. The effect of pH on the final product was investigated. The results show that a higher volume ratio of NaOH results in well-defined CuO nanosheets. XRD results confirmed the formation of pure CuO with a monoclinic structure at higher pH, whereas gerhardtite was formed at lower pH. TEM results indicate that …


Single-Cell Measurements Of Ige-Mediated Fcεri Signaling Using An Integrated Microfluidic Platform, Yanli Liu, Dipak Barua, Peng Liu, Bridget S. Wilson, Janet M. Oliver, William S. Hlavacek, Anup K. Singh Mar 2013

Single-Cell Measurements Of Ige-Mediated Fcεri Signaling Using An Integrated Microfluidic Platform, Yanli Liu, Dipak Barua, Peng Liu, Bridget S. Wilson, Janet M. Oliver, William S. Hlavacek, Anup K. Singh

Chemical and Biochemical Engineering Faculty Research & Creative Works

Heterogeneity in responses of cells to a stimulus, such as a pathogen or allergen, can potentially play an important role in deciding the fate of the responding cell population and the overall systemic response. Measuring heterogeneous responses requires tools capable of interrogating individual cells. Cell signaling studies commonly do not have single-cell resolution because of the limitations of techniques used such as Westerns, ELISAs, mass spectrometry, and DNA microarrays. Microfluidics devices are increasingly being used to overcome these limitations. Here, we report on a microfluidic platform for cell signaling analysis that combines two orthogonal single-cell measurement technologies: on-chip flow cytometry …


Molecular Diversity Of Bacteroidales In Fecal And Environmental Samples And Swine-Associated Subpopulations, Regina Lamendella, Kent C. Li, Daniel B. Oerther, Jorge W. Santo Domingo Feb 2013

Molecular Diversity Of Bacteroidales In Fecal And Environmental Samples And Swine-Associated Subpopulations, Regina Lamendella, Kent C. Li, Daniel B. Oerther, Jorge W. Santo Domingo

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Several swine-specific microbial source tracking methods are based on PCR assays targeting Bacteroidales 16S rRNA gene sequences. The limited application of these assays can be explained by the poor understanding of their molecular diversity in fecal sources and environmental waters. In order to address this, we studied the diversity of 9,340 partial (>600bp in length) Bacteroidales 16S rRNA gene sequences from 13 fecal sources and nine feces-contaminated watersheds. The compositions of major Bacteroidales populations were analyzed to determine which host and environmental sequences were contributing to each group. This information allowed us to identify populations which were both exclusive …


Sector Expansion And Elliptical Modeling Of Blue-Gray Ovoids For Basal Cell Carcinoma Discrimination In Dermoscopy Images, Pelin Guvenc, Robert W. Leander, Serkan Kefel, William V. Stoecker, Ryan K. Rader, Kristen A. Hinton, Sherea Monica Stricklin, Harold S. Rabinovitz, Margaret C. Oliviero, Randy Hays Moss Feb 2013

Sector Expansion And Elliptical Modeling Of Blue-Gray Ovoids For Basal Cell Carcinoma Discrimination In Dermoscopy Images, Pelin Guvenc, Robert W. Leander, Serkan Kefel, William V. Stoecker, Ryan K. Rader, Kristen A. Hinton, Sherea Monica Stricklin, Harold S. Rabinovitz, Margaret C. Oliviero, Randy Hays Moss

Chemistry Faculty Research & Creative Works

Background: Blue-gray ovoids (B-GOs), a critical dermoscopic structure for basal cell carcinoma (BCC), offer an opportunity for automatic detection of BCC. Due to variation in size and color, B-GOs can be easily mistaken for similar structures in benign lesions. Analysis of these structures could afford accurate characterization and automatic recognition of B-GOs, furthering the goal of automatic BCC detection. This study utilizes a novel segmentation method to discriminate B-GOs from their benign mimics.

Methods: Contact dermoscopy images of 68 confirmed BCCs with B-GOs were obtained. Another set of 131 contact dermoscopic images of benign lesions possessing B-GO mimics provided a …


Synthesis And Growth Kinetics Of Spindly Cuo Nanocrystals Via Pulsed Wire Explosion In Liquid Medium Jan 2013

Synthesis And Growth Kinetics Of Spindly Cuo Nanocrystals Via Pulsed Wire Explosion In Liquid Medium

A.S. Md Abdul Haseeb

One-dimensional CuO nanocrystals with spindly structure were successfully synthesized using pulsed wire explosion technique in deionized water. By modulating the exploding medium temperature spherical Cu nanoparticles and one-dimensional CuO nanocrystals can be selectively synthesized. At low temperature (1 C) the particle growth is governed by Ostwald ripening resulting in formation of equidimensional crystals (spherical). As the exploding temperature increases (60 C), oriented aggregation in a preferential direction resulted in unique spindly nanostructure. A possible crystal growth mechanism for these nanostructures with various morphologies at different exploding temperature is proposed. Particle growth by Ostwald ripening or orientated aggregation is highly dependent …


Synthesis And Growth Kinetics Of Spindly Cuo Nanocrystals Via Pulsed Wire Explosion In Liquid Medium Jan 2013

Synthesis And Growth Kinetics Of Spindly Cuo Nanocrystals Via Pulsed Wire Explosion In Liquid Medium

A.S. Md Abdul Haseeb

One-dimensional CuO nanocrystals with spindly structure were successfully synthesized using pulsed wire explosion technique in deionized water. By modulating the exploding medium temperature spherical Cu nanoparticles and one-dimensional CuO nanocrystals can be selectively synthesized. At low temperature (1 C) the particle growth is governed by Ostwald ripening resulting in formation of equidimensional crystals (spherical). As the exploding temperature increases (60 C), oriented aggregation in a preferential direction resulted in unique spindly nanostructure. A possible crystal growth mechanism for these nanostructures with various morphologies at different exploding temperature is proposed. Particle growth by Ostwald ripening or orientated aggregation is highly dependent …


Plasmon-Mediated Magneto-Optical Transparency, Vladimir Belotelov, L. E. Kreilkamp, Ilya Akimov, A Kalish, D Bykov, S Kasture, V Yallapragada, A Gopal, A M Grishin, S I Khartsev, Mohammad Nur E Alam, Mikhail Vasiliev, L Doskolovich, D Yakovlev, Kamal Alameh, A K Zvezdin, M Bayer Jan 2013

Plasmon-Mediated Magneto-Optical Transparency, Vladimir Belotelov, L. E. Kreilkamp, Ilya Akimov, A Kalish, D Bykov, S Kasture, V Yallapragada, A Gopal, A M Grishin, S I Khartsev, Mohammad Nur E Alam, Mikhail Vasiliev, L Doskolovich, D Yakovlev, Kamal Alameh, A K Zvezdin, M Bayer

Research outputs 2013

Magnetic field control of light is among the most intriguing methods for modulation of light intensity and polarization on sub-nanosecond timescales. The implementation in nanostructured hybrid materials provides a remarkable increase of magneto-optical effects. However, so far only the enhancement of already known effects has been demonstrated in such materials. Here we postulate a novel magneto-optical phenomenon that originates solely from suitably designed nanostructured metal-dielectric material, the so-called magneto-plasmonic crystal. In this material, an incident light excites coupled plasmonic oscillations and a waveguide mode. An in-plane magnetic field allows excitation of an orthogonally polarized waveguide mode that modifies optical spectrum …


High Sensitivity Optically Pumped Quantum Magnetometer, Valentina Tiporlini, Kamal Alameh Jan 2013

High Sensitivity Optically Pumped Quantum Magnetometer, Valentina Tiporlini, Kamal Alameh

Research outputs 2013

Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 W and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz1/2 over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz1/2 in the presence …