Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Local Gas Holdup In A Draft Tube Airlift Bioreactor, Hu Ping Luo, Muthanna H. Al-Dahhan Aug 2010

Local Gas Holdup In A Draft Tube Airlift Bioreactor, Hu Ping Luo, Muthanna H. Al-Dahhan

Chemical and Biochemical Engineering Faculty Research & Creative Works

Airlift Column Bioreactors Are Gas-Liquid Contact Devices Characterized by a Rising Channel and a Down Flow Channel Due to Gas Holdup Differences in These Two Channels. Local Gas Holdup Distribution Strongly Affects the overall Gas-Liquid Flow Dynamics in Airlift Columns. in This Work, Local Gas Holdup Distributions in a Draft Tube Airlift Column Covering Both Bubbly Flow and Churn-Turbulent Flow Regimes Have Been Studied using Computed Tomography (CT) Technique as Well as Conventional Techniques. the Radial and Axial Evolutions of the Gas Holdup Distribution Will Be Discussed, Together with the Effects of Superficial Gas Velocity and Geometry Parameters. the Obtained …


Viscosity Effects In Vibratory Mobilization Of Residual Oil, Igor A. Beresnev, Wen Deng Jul 2010

Viscosity Effects In Vibratory Mobilization Of Residual Oil, Igor A. Beresnev, Wen Deng

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The last decade has seen clarifications of the underlying capillary physics behind stimulation of oil production by seismic waves and vibrations. Computational studies have prevailed, however, and no viscous hydrodynamic theory of the phenomenon has been proposed. For a body of oil entrapped in a pore channel, viscosity effects are naturally incorporated through a model of two-phase core-annular flow. These effects are significant at the postmobilization stage, when the resistance of capillary forces is overcome and viscosity becomes the only force resisting an oil ganglion's motion. A viscous equation of motion follows, and computational fluid dynamics (CFD) establishes the limits …


Transport Mechanisms And Modeling Of Riser Reactor, Dawei Wang May 2010

Transport Mechanisms And Modeling Of Riser Reactor, Dawei Wang

Dissertations

Riser reactors are extensively employed in various industrial applications. In a riser reactor, the hydrodynamics is closely interacted with kinetic reactions. Common models for the performance prediction of riser reactors overlook this vital coupling effect, which not only miss the important reaction characteristics in the dense-phase transport regime of riser reactors but also misinterpret the kinetic properties via ad hoc adjustments. It is noted that the modeling of hydrodynamics in riser flows has major flaws in its predictability of phase transport in both dense-phase and accelerating regimes where most reactions occur. In addition, with the spray feeding of reactants at …


Study Of The Minimum Spouting Velocity In A Draft Tube Conical Spouted Bed, Haritz Altzibar, G. Lopez, M. Olazar, J. Bilbao May 2010

Study Of The Minimum Spouting Velocity In A Draft Tube Conical Spouted Bed, Haritz Altzibar, G. Lopez, M. Olazar, J. Bilbao

The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering

A study has been carried out on the hydrodynamics of conical spouted beds with a non-porous draft-tube. A hydrodynamic correlation has been proposed for calculating the minimum spouting velocity as a function of dimensionless moduli that take into account geometric factors, particle characteristics and operating conditions. A statistical analysis of the data obtained following a design of experiments shows that the inlet diameter, particle diameter and the height of the entrainment zone are the parameter of greater influence on the minimum spouting velocity.


Numerical Computation Of Hydrodynamic Behavior Of Biomass Particles In Circulating Fluidized Beds, Afsin Gungor Dr. May 2010

Numerical Computation Of Hydrodynamic Behavior Of Biomass Particles In Circulating Fluidized Beds, Afsin Gungor Dr.

The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering

A model using a particle based approach is developed to accurately predict the hydrodynamic behavior of biomass particles in CFBs. Generally, the change in the pressure gradient with height in CFB riser is small. Numerical results are in good agreement with experiments, both in form and magnitude.


On The Effect Of Hydrodynamic Slip On The Polarization Of A Nonconducting Spherical Particle In An Alternating Electric Field, Hui Zhao Jan 2010

On The Effect Of Hydrodynamic Slip On The Polarization Of A Nonconducting Spherical Particle In An Alternating Electric Field, Hui Zhao

Mechanical Engineering Faculty Research

The polarization of a charged, dielectric, spherical particle with a hydrodynamically slipping surface under the influence of a uniform alternating electric field is studied by solving the standard model (the Poisson–Nernst–Planck equations). The dipole moment characterizing the strength of the polarization is computed as a function of the double layer thickness, the electric field frequency, the particle’s surface charge, and the slip length. Our studies reveal that two processes contribute to the dipole moment: ion transport inside the double layer driven by the electric field and the particle’s electrophoretic motion. The hydrodynamic slip will simultaneously impact both processes. In the …


Electro-Osmotic Flow Over A Charged Superhydrophobic Surface, Hui Zhao Jan 2010

Electro-Osmotic Flow Over A Charged Superhydrophobic Surface, Hui Zhao

Mechanical Engineering Faculty Research

Bubbles can be trapped inside textured structures such as grooves, forming a superhydrophobic surface. A superhydrophobic surface has a large effective hydrodynamic slip length compared to a smooth hydrophobic surface and holds the promise of enhancing electrokinetic flows that find many interesting applications in microfluidics. However, recent theoretical studies suggested that electro-osmotic flows over a weakly charged superhydrophobic surface

the zeta potential of the surface is smaller than the thermal potential (25 mV) can only be enhanced when liquid-gas interfaces are charged [T. M. Squires, Phys. Fluids 20, 092105 (2008); Bahga et al., J. Fluid Mech. 644, 245 (2010)]. So …