Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Ph Dependant Coating For Microfluidics Devices, L Limsavarn, C Panithipongwut, P Thongkorn, S T. Dubas Dec 2006

Ph Dependant Coating For Microfluidics Devices, L Limsavarn, C Panithipongwut, P Thongkorn, S T. Dubas

Journal of Metals, Materials and Minerals

The layer-by-layer technique was used to coat the channels of PDMS microfluidics devices. The coating was based on the sequential deposition of polydiallyldimethylammonium chloride (PDADMAC) with a copolymer of polystyrene sulfonate and maleic acid (CoPSS-Maleic) into polyelectrolyte multilayer (PEM). The possible deposition of PEM coating on PDMS was confirm by contact angle which showed the clear transformation of the PDMS surface from hydrophobic to hydrophilic. The later deposition of the PEM coating inside the micro-channels was confirmed by change in electroosmotic flow direction (EOF) and intensity as a function of the number of deposited layers. The EOF measurements revealed that …


Capillary-Driven Flows Along Rounded Interior Corners, Yongkang Chen, Mark M. Weislogel, Cory L. Nardin Nov 2006

Capillary-Driven Flows Along Rounded Interior Corners, Yongkang Chen, Mark M. Weislogel, Cory L. Nardin

Mechanical and Materials Engineering Faculty Publications and Presentations

The problem of low-gravity isothermal capillary flow along interior corners that are rounded is revisited analytically in this work. By careful selection of geometric length scales and through the introduction of a new geometric scaling parameter Tc, the Navier–Stokes equation is reduced to a convenient∼O(1) form for both analytic and numeric solutions for all values of corner half-angle α and corner roundedness ratio λ for perfectly wetting fluids. The scaling and analysis of the problem captures much of the intricate geometric dependence of the viscous resistance and significantly reduces the reliance on numerical data compared with several previous solution methods …


Fabrication Of Hollow Optical Waveguides On Planar Substrates, John P. Barber Oct 2006

Fabrication Of Hollow Optical Waveguides On Planar Substrates, John P. Barber

Theses and Dissertations

This dissertation presents the fabrication of hollow optical waveguides integrated on planar substrates. Similar in principle to Bragg waveguides and other photonic crystal waveguides, the antiresonant reflecting optical waveguide (ARROW) is used to guide light in hollow cores filled with liquids or gases. Waveguides with liquid or gas cores are an important new building block for integrated optical sensors. The fabrication method developed for hollow ARROW waveguides makes use of standard microfabrication processes and materials. Dielectric layers are deposited on a silicon wafer using plasma-enhanced chemical vapor deposition (PECVD) to form the bottom layers of the ARROW waveguide. A sacrificial …


Investigation Of Ethanol Dehydration In A Microscale Pervaporation Process, Sudhir Ramprasad Oct 2006

Investigation Of Ethanol Dehydration In A Microscale Pervaporation Process, Sudhir Ramprasad

Doctoral Dissertations

Challenges due to surface tension effects for vaporization in microchannels have restricted the implementation of conventional separation processes that involve liquid boiling in a micro-chemical system. However, membrane separations offer a feasible alternative for exploring the advantages of liquid phase separation in micro-chemical systems. The main objective of this research was to evaluate the process intensification effects in a microscale pervaporation process with experiments involving the separation of ethanol/water using a commercially available polymer dehydration membrane.

The microchannels in the microseparator were fabricated by the dry etch process at Louisiana Tech University. Microchannel depths of 20 to 120 μm, with …


Rapid Prototyping Of Microfluidic Packages, Michael Pepper Jan 2006

Rapid Prototyping Of Microfluidic Packages, Michael Pepper

Electronic Theses and Dissertations

In the area of MEMS there exists a tremendous need for communication between the micro-device and the macro world. A standard protocol or at least multiple standards would be of great use. Electrical connections have been standardized for many uses and configurations by the integrated circuit industry. Standardization in the IC industry has created a marketplace for digital devices unprecedented. In addition to the number of "off the shelf" products available, there exists the possibility for consumers to mix and match many devices from many different manufacturers. This research proposes some similar solutions as those for integrated circuits for fluid …


Low Temperature Co-Fired Ceramics For Micro-Fluidics, John Youngsman, Brian Marx, Martin Schimpf, Scott Wolter, Jeff Glass, Amy Moll Jan 2006

Low Temperature Co-Fired Ceramics For Micro-Fluidics, John Youngsman, Brian Marx, Martin Schimpf, Scott Wolter, Jeff Glass, Amy Moll

Materials Science and Engineering Faculty Publications and Presentations

The miniaturization of analytical instruments and packaging of novel sensors is an area that has attracted significant research interest and offers many opportunities for product commercialization. Low Temperature Co-fired Ceramics (LTCC) is a materials system composed of alumina and glass in an organic binder. LTCC is a good choice for sensor development because of the ease of incorporating features in the ‘green’ or unfired state such as electrical traces, fluidic pathways and passive electrical components. After a firing cycle, what remains is a robust, monolithic device with features embedded in the package. In order for LTCC to be a successful …


Surface Modification Of Su-8 By Photografting Of Functional Polymers For Lab-On-A-Chip Applications, Zhan Gao, David Henthorn, Chang-Soo Kim Jan 2006

Surface Modification Of Su-8 By Photografting Of Functional Polymers For Lab-On-A-Chip Applications, Zhan Gao, David Henthorn, Chang-Soo Kim

Chemical and Biochemical Engineering Faculty Research & Creative Works

Due to the high flexibility and versatility in the process development of microfluidic devices, an epoxybased, high-aspect ratio photoresist SU-8 is now attracting attention as the main structuring material of the fluidic channels. Manipulation of the surface properties of SU-8 channel wall is critical to attach functional films such as enzyme-immobilized layers or biocompatible layers. We describe a new in situ patterning method to form a hydrogel film on SU-8 by a photografted polymerization procedure. The hydrophobic surface of SU-8 is modified using a surface bound initiator HCPK (1-hydroxycyclohexyl phenyl ketone). A p-HEMA (poly-2-hydroxyethylmethacrylate) hydrogel film is grafted by photopolymerization …