Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

2022

CFD

Discipline
Institution
Publication

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth Dec 2022

Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth

McKelvey School of Engineering Theses & Dissertations

With the advent of arteriovenous fistula (AVF) for use in hemodialysis, the anastomosis built for such use has become a central point of the study to understand the flow and wall shear stresses in such a system since very large wall shear stresses can lead to arterial/vein rupture. Considering the commonly used creation site of an anastomosis as connecting the radial artery to the cephalic vein, a model is created to calculate the wall shear stresses across various components of the system. The model depicts a connection of the specified vein and artery bridged together allowing the increase in blood …


Predictive Capabilities Of Laminar-Turbulent Transition Models For Aerodynamics Applications, Jared Alexander Carnes Aug 2022

Predictive Capabilities Of Laminar-Turbulent Transition Models For Aerodynamics Applications, Jared Alexander Carnes

Doctoral Dissertations

Laminar-turbulent boundary-layer transition has a demonstrable impact on the performance of aerospace vehicles. The ability to accurately predict transition is integral to properly capturing relevant flow physics. Traditionally, computational fluid dynamics simulations are performed fully turbulent, meaning that laminar flow is neglected. This, however, can result in errant predictions of vehicle performance as quantities such as skin-friction drag may be overpredicted. Resultingly, development of Reynolds-averaged Navier-Stokes transition models has seen significant attention over the last decades in order to model transition and realize the performance improvements of laminar flow.

In this work, the behaviors of several different transition-prediction methods are …


Using Computational Fluid Dynamics To Predict Flow Through The West Crack Breach Of The Great Salt Lake Railroad Causeway, Michael Rasmussen Aug 2022

Using Computational Fluid Dynamics To Predict Flow Through The West Crack Breach Of The Great Salt Lake Railroad Causeway, Michael Rasmussen

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The Great Salt Lake in Utah, USA, is a terminal, saline lake and is divided into two primary sections (northern and southern) by an east-to-west railroad causeway. Shortly after completion of the earth-fill causeway in the late 1950s, the two sections became dramatically different with differences in water surface elevation and water density. These differences cause the formation of a unique flow behavior commonly referred to as a density-driven exchange flow or bi-directional flow; a behavior observed in other lake and ocean settings where two fluids of differing densities interact. Measuring these exchange flows is a priority for lake managers …


Fire Simulation And Analysis Of A Switchgear Cabinet Fire And Its Effects On Cable Trays, Yalcin Meraki Aug 2022

Fire Simulation And Analysis Of A Switchgear Cabinet Fire And Its Effects On Cable Trays, Yalcin Meraki

Masters Theses

Switchgear rooms are crucial in containing essential equipment such as cabinets and cable trays in case of a possible fire. There are three fire model classes which are algebraic models, zone model, and computation fluid dynamics model (CFD). PyroSim software, a visual user interface for the Fire Dynamics Simulator (FDS) developed at the National Institute of Standards and Technology (NIST), was used for simulation by using the CFD. Two different 464 kW and 1002 kW heat release rate (HRR) values were used under the same conditions for the fire scenario. By considering a fire scenario, the fire ignited due to …


Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley Aug 2022

Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley

Masters Theses

The rotor hub is one of the most important features of all helicopters, as it provides the pilot a means for controlling the vehicle by changing the characteristics of the main and tail rotors. The hub also provides a structural foundation for the rotors and allows for the rotor blades to respond to aerodynamic forces while maintaining controllability and stability. Due to the inherent geometry and high rate of rotation, the rotor hub in its current form acts a large bluff body and is the primary source of parasite drag on the helicopter, despite its relatively small size. The rotor …


Reformulated Vortex Particle Method And Meshless Large Eddy Simulation Of Multirotor Aircraft, Eduardo J. Alvarez Jun 2022

Reformulated Vortex Particle Method And Meshless Large Eddy Simulation Of Multirotor Aircraft, Eduardo J. Alvarez

Theses and Dissertations

The vortex particle method (VPM) is a mesh-free approach to computational fluid dynamics (CFD) solving the Navier-Stokes equations in their velocity-vorticity form. The VPM uses a Lagrangian scheme, which not only avoids the hurdles of mesh generation, but it also conserves vortical structures over long distances with minimal numerical dissipation while being orders of magnitude faster than conventional mesh-based CFD. However, VPM is known to be numerically unstable when vortical structures break down close to the turbulent regime. In this study, we reformulate the VPM as a large eddy simulation (LES) in a scheme that is numerically stable, without increasing …


Using Experiments, 3d Scanning, And Computational Fluid Dynamics To Analyze Variance In Minor Loss Coefficients, Adam B. Pack May 2022

Using Experiments, 3d Scanning, And Computational Fluid Dynamics To Analyze Variance In Minor Loss Coefficients, Adam B. Pack

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

As water moves through pipes, it loses energy. The energy losses are due to friction and the minor losses associated with various pipe fittings, which change the direction of flow. Pipe bends, or elbows, are a common pipe fitting and a significant source of energy loss in piping systems. This research was performed to better understand the variability of energy loss due to different pipe elbow designs and to investigate methods to replicate these losses using numerical simulations.

Eight pipe elbows, all 3-inch, 90-degree, schedule 40 PVC elbows that vary by radius of curvature and/or end connection type, were tested …


Computational Study Of Dense Gas Dispersion In Urban Areas, Rasna Sharmin May 2022

Computational Study Of Dense Gas Dispersion In Urban Areas, Rasna Sharmin

All Dissertations

A series of steady-state simulations have been conducted to investigate removal of dense gas from a simple square canyon formed between two square cross-section obstacles. Due to urbanization and industrialization, there always lies a high risk of exposure to harmful pollutants which can result from accidental release of toxic gasses. Those are often denser than the atmosphere. and can easily get trapped in between buildings in urban canopies. It is important to have full understanding of flushing mechanism of dense fluid inside urban canopies by steady turbulent flow because the exposure to these toxic dense gasses can be catastrophic. There …


A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis May 2022

A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis

Mechanical & Aerospace Engineering Theses & Dissertations

Achieving higher Mach numbers for private and commercial flight is a growing interest in the aerospace community. To qualify vehicles prior to flight, tests must be run in wind tunnels. Asymmetric wind tunnel nozzles are of continuing interest to the aerospace community due to their ability to change throat geometry, allowing for a range of Mach numbers to be achieved that encompasses all of the supersonic regime. The sliding block wind tunnel at Old Dominion University (ODU) is designed for a range of Mach numbers from about 1.8 to 3.5 but is limited to an upper limit of 2.8 by …


Fuel Injector Design Of A Hypersonic Jet Engine Using Computational Fluid Dynamics, Melissa Rose Mercado May 2022

Fuel Injector Design Of A Hypersonic Jet Engine Using Computational Fluid Dynamics, Melissa Rose Mercado

UNLV Theses, Dissertations, Professional Papers, and Capstones

The development of hypersonic airbreathing engines, such as a supersonic combustion ramjet, or scramjet, are implemented for flight Mach numbers over 5 where combustion must occur in supersonic conditions. The advancement of scramjet propulsion has led to favored usage over rocket propulsion systems for in atmosphere applications due to their lighter weight, higher specific impulse, and greater maneuverability [1]. The combustor section of a scramjet engine houses the fuel injectors. Fuel is injected into the supersonic flow with the main objective of achieving rapid and thorough fuel-air mixing because the residence time in the combustion chamber has a timescale of …


Quantifying Shear Stresses In Tissue Engineered Aortic Heart Valves, Raj Nitin Dave May 2022

Quantifying Shear Stresses In Tissue Engineered Aortic Heart Valves, Raj Nitin Dave

All Theses

Present heart valve prosthesis have limitations such as capability to grow, repair and remodel post implantation. Tissue engineering offers to be a promising alternative to overcome these limitations. Maturation of seeded human cells on the valve subjected to favorable growth conditions in the bioreactor is critical to the success of tissue engineered heart valves. Mechanical stress and strain which results from the pressure and flow conditions in the bioreactor plays a critical role on the developing valve tissue and are currently unknown. The goal of this research is to relate the magnitude of wall shear stress (WSS) within the heart …


Cooling Systems Analysis For Plastic Mold Injection Tools, Veronica Flores Quijada Apr 2022

Cooling Systems Analysis For Plastic Mold Injection Tools, Veronica Flores Quijada

Electronic Thesis and Dissertation Repository

The Plastic Injection Mold (PIM) industry has been searching for new technologies that improve the manufacturing of parts by reducing the production time and cost as well as increasing the quality of the product. The cooling systems in the PIM are designed initially to be straight-drilled into the mold, but this manufacturing process has traditionally not been very effective, since for molded parts with complex geometries, the cooling channels are not able to reach certain areas. This limitation has led the industry to develop conformal cooling channels that use the additive manufacturing technology, which allows the cooling channels to conform …


Solidification Experiments And Magnetohydrodynamic Models In Electromagnetic Levitation, Gwendolyn Bracker Mar 2022

Solidification Experiments And Magnetohydrodynamic Models In Electromagnetic Levitation, Gwendolyn Bracker

Doctoral Dissertations

Electromagnetic levitation (EML) is a technique for containerless processing. The unique environment of containerless processing allows for the study of highly reactive melts at elevated temperatures. In containerless processing, the interface between a melt and its container is removed, reducing chemical contamination. In addition, levitation techniques reduce the available heterogeneous nucleation sites, providing greater access to the undercooled region for solidification studies. Levitation techniques provide the environment to study the fundamental behavior and thermophysical properties of liquid metals. During electromagnetic levitation experiments, magnetohydrodynamic flow is driven in the sample by the electromagnetic force field. This flow can have various effects …


Surrogate Modeling Of Computational Aerodynamic Responses For A Generic Hypersonic Vehicle, Jacob R. Johanik Mar 2022

Surrogate Modeling Of Computational Aerodynamic Responses For A Generic Hypersonic Vehicle, Jacob R. Johanik

Theses and Dissertations

In the field of multidisciplinary hypersonic vehicle design, striking the balance between the accuracy and efficiency of a predictive aerodynamic response model is a significant challenge. In response to this challenge, the objective of this thesis is to evaluate the aerodynamic performance of a Generic Hypersonic Vehicle (GHV) using the technique of surrogate modeling Computational Fluid Dynamic data points across a large range of flight conditions. To accomplish this, the full CFD process was conducted by preparing the vehicle geometry, generating a grid, computing the flow, and post-processing the data. A three-dimensional, quasi-random distribution of 1000 points defined the design …


Towards Simulation Of Complex Ocean Flows: Analysis And Algorithm For Computation Of Coupled Partial Differential Equations, Wenbin Dong Jan 2022

Towards Simulation Of Complex Ocean Flows: Analysis And Algorithm For Computation Of Coupled Partial Differential Equations, Wenbin Dong

Dissertations and Theses

The hybrid CFD models which usually consist of 2 sub-models, develop our capability to simulate many emerging problems with multiphysics and multiscale flows, especially for the coastal ocean flows interacted with local phenomena of interest. For most cases, the sub-models are connected with direct interpolation which is easy and workable. It becomes urgently needed to investigate the inner mechanism of such model integration as this simple method does not work well if the two sub-models are different in governing equations, numerical methods, and computational grids. Also, it can not treat complex flow structures as well as the balance in mass …


Investigating Ground Interactions Of A Rotocraft Landing Vehicle On Titan, Adam Rozman Jan 2022

Investigating Ground Interactions Of A Rotocraft Landing Vehicle On Titan, Adam Rozman

Honors Undergraduate Theses

The exploration of celestial bodies has recently advanced from rovers to rotorcraft. This includes the recent flights of Mars Ingenuity and the upcoming Dragonfly mission to explore the terrain of Saturn’s moon Titan as part of NASA’s New Frontiers Program. Flight-based landers can travel quickly to sites kilometers apart and land in complex terrain. Although cruise conditions for these rotorcrafts are well understood, studies are necessary to understand take-off and landing. In ground effect conditions, a rotor wake impinges and reflects off the ground, creating changes in aerodynamics such as increased lift. Additionally, operating over loose surfaces, the rotors can …


Numerical Simulation On The Effects Of Entrainment On Hydrogen Jet-In-Crossflow Combustion, Malcolm K. Newmyer Jan 2022

Numerical Simulation On The Effects Of Entrainment On Hydrogen Jet-In-Crossflow Combustion, Malcolm K. Newmyer

Honors Undergraduate Theses

This Research explores hydrogen combustion in a Jet-in-Crossflow configuration through computational fluid dynamics using ANSYS Fluent commercial CFD software. Three fuel-only hydrogen jets with a momentum flux ratio J of 10, 50, and 115 were introduced axially, using a large eddy simulation with a WALE sub grid model. Detailed chemistry was computed directly with a 9 species hydrogen/air kinetic mechanism. The 4mm jet and crossflow domain utilized an automatic mesh adaptation method centered around the flame shear layer. The study models the second stage of a lab-scale gas turbine test facility at a pressure level of 5atm,a crossflow temperature of …


Temperature Analysis Of A Square Lid-Driven Cavity With Particle Suspensions, Justin Kortge Jan 2022

Temperature Analysis Of A Square Lid-Driven Cavity With Particle Suspensions, Justin Kortge

Graduate Research Theses & Dissertations

Computational fluid dynamics (CFD) and discrete element method (DEM) are powerful tools for simulating systems that contain fluids and particles. Studies of particle fluid systems greatly vary in their applications and complexity, and yet there is a scarcity of studies focused on the thermal characteristics of the fluid. A computational analysis is conducted on two-dimensional flow in a square thermal lid-driven cavity to assess the effect of particle suspensions on the thermal characteristics of the cavity. Most studies analyzing the effect of suspensions in a thermal lid-driven cavity treat the medium as a single homogeneous nanofluid. Those that do treat …


Analysis Of Nozzle Expansion Characteristics In Supersonic Retro-Propulsion, Gonzalo Montoya Jan 2022

Analysis Of Nozzle Expansion Characteristics In Supersonic Retro-Propulsion, Gonzalo Montoya

Honors Undergraduate Theses

Supersonic retro-propulsion (SRP) is defined as rocket propulsion used to decelerate aerospace vehicles at supersonic speed. SRP is often used as a method of high-speed deceleration on space vehicles. The main method of propulsion used in the application of SRP is rocket propulsion. Rocket engine thrust and performance changes with altitude and expansion ratio. Changing altitudes across the trajectory of a rocket affect how the exhaust plume shock waves expand. Being able to identify how different expansion ratios affect the exhaust plume flow fields would provide useful data on how SRP performance can be predicted. This research projects aims at …


Ternary Flow Simulation Based On The Conservative Phase Field Lattice Boltzmann Method, Chunheng Zhao Jan 2022

Ternary Flow Simulation Based On The Conservative Phase Field Lattice Boltzmann Method, Chunheng Zhao

Dissertations and Theses

In this thesis, we numerically investigated multi-phase fluid dynamics (2 and 3-phase flow) by solving the Navier-Stokes equations coupled with the conservative phase field (CPF) equations using the Lattice Boltzmann method (LBM). To effectively simulate the large-scale multi-phase physics, we developed an open-source software, IMEXLBM, which can be easily parallelized on both CPUs and GPUs without significant modifications to the code. We first validated various parts of this software and then used this method to study the interaction of rising bubbles with a static oil droplet as well as the engulfment of the water droplet on solids coated with a …


Pymoocfd - A Multi-Objective Optimization Framework For Cfd, George Martin Cunningham Love Jan 2022

Pymoocfd - A Multi-Objective Optimization Framework For Cfd, George Martin Cunningham Love

Graduate College Dissertations and Theses

Modern computational resource have solidified the use of computer modeling as an integral part of the engineering design process. This is particularly impressive when it comes to high-dimensional models such as computational fluid dynamics (CFD) models. CFD models are now capable of producing results with a level of confidence that would previously have required physical experimentation. Simultaneously, the development of machine learning techniques and algorithms has increased exponentially in recent years. This acceleration is also due to the widespread availability of modern computational resources. Thus far, the cross-over between these fields has been mostly focused on computer models with low …


A Computational Fluid Dynamics Analysis Of The Temperature And Impurity Profiles In The Protodune-Sp Neutrino Detector, Jenna Harrison Jan 2022

A Computational Fluid Dynamics Analysis Of The Temperature And Impurity Profiles In The Protodune-Sp Neutrino Detector, Jenna Harrison

Electronic Theses and Dissertations

Computational fluid dynamics (CFD) models of the ProtoDUNE single-phase detector were developed, refined, and analyzed. The ProtoDUNE single-phase detector is a prototype detector that is part of the Deep Underground Neutrino Experiment, an international research collaboration aimed at better understanding neutrinos and the role they play in our universe. The ProtoDUNE single-phase detector is used to gather data and inform design changes for the full-sized far detector prior to its construction. The effects of certain geometric features and heat sources on the thermal profiles within the liquid region of the detector were investigated in a set of parametric studies. The …


A Non-Reacting Passive Scalar Comparison Of Starccm And Openfoam In A Supersonic Cavity Flame Holder, Thomas Nuese Jan 2022

A Non-Reacting Passive Scalar Comparison Of Starccm And Openfoam In A Supersonic Cavity Flame Holder, Thomas Nuese

Electronic Theses and Dissertations

The scramjet engine equipped with a modern-day airliner would allow for very quick travel across the United States. The major problem is that designing such an engine and testing it to make sure it is safe would cost millions if not billions of dollars. Computational fluid dynamics allows for complex designs to be tested but can still take many days, weeks, or even months to complete. With the use of computational fluid dynamics (CFD), the scramjet engine can be analyzed to determine a quicker way to test and develop a reliable configuration in addition to analyzing the effects of different …


Hypersonic Conceptual Design Tool Comparison, James G. Wnek Jan 2022

Hypersonic Conceptual Design Tool Comparison, James G. Wnek

Browse all Theses and Dissertations

The many iterations needed to explore a design space in the conceptual design process preclude the use of time-consuming RANS CFD for all but a few flight conditions. This research focuses on identifying the level of fidelity needed to adequately predict the aerothermodynamic characteristics of hypersonic vehicles. Three tools with differing levels of fidelity – CBAERO, Cart3D, and Kestrel – were used to analyze the Generic Hypersonic Vehicle (GHV) at the design condition of Mach 5.85 and an off-design condition of Mach 4.5. The results are representative of the different design tools but are not definitive due to the mesh …


Cfd And Heat Transfer Analysis Of Rocket Cooling Techniques On An Aerospike Nozzle, Geoffrey Sullivan Jan 2022

Cfd And Heat Transfer Analysis Of Rocket Cooling Techniques On An Aerospike Nozzle, Geoffrey Sullivan

Electronic Theses and Dissertations

In recent years the development of rocket engines has been mainly focused on improving the engine cycle and creating new fuels. Rocket nozzle design has not been changed since the late 1960s. Recent needs for reliable and reusable rockets, as well as advancements in additive manufacturing, have brought new interest into the aerospike nozzle concept. This nozzle is a type of altitude adjusting nozzle that is up to 90% more efficient than bell nozzles at low altitudes and spends up to 30% less fuel. Since the nozzle body is submerged in the hot exhaust gasses it is difficult to keep …