Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Properties Of Ambient-Cured Normal And Heavyweight Geopolymer Concrete Exposed To High Temperatures, Farhad Aslani, Zohaib Asif Jan 2019

Properties Of Ambient-Cured Normal And Heavyweight Geopolymer Concrete Exposed To High Temperatures, Farhad Aslani, Zohaib Asif

Research outputs 2014 to 2021

Ambient-cured heavyweight geopolymer concrete (HWGC) is a new type of concrete that combines the benefits of both heavyweight concrete (HWC) and geopolymer concrete (GC). HWGC provides proper protection from the sources that emit harmful radiations in medical and nuclear industries. Furthermore, HWGC may also be used in offshore structures for pipeline ballasting and similar underwater structures. In this study, heavyweight aggregates (magnetite) have been used and replaced by normal-weight coarse aggregates in GC at volume ratios of 50, 75, and 100% to attain heavyweight classification according to British standards. This study investigates the impacts of high temperatures on standard ambient-cured …


Probing The Roles Of Polymeric Separators In Lithium-Ion Battery Capacity Fade At Elevated Temperatures, Jianchao Chen, Yongda Yan, Tao Sun, Yue Qi, Xiaodong Li May 2014

Probing The Roles Of Polymeric Separators In Lithium-Ion Battery Capacity Fade At Elevated Temperatures, Jianchao Chen, Yongda Yan, Tao Sun, Yue Qi, Xiaodong Li

Faculty Publications

The high temperature mechanical property of separators is very important for safety of lithium-ion batteries. However, the mechanical integrity of polymeric separators in lithium-ion batteries at elevated temperatures is still not well characterized. In this paper, the temperature dependent micro-scale morphology change of PP (polypropylene)-PE (polyethylene)-PP sandwiched separators (Celgard 2325) was studied by in-situ high temperature surface imaging using an atomic force microscope (AFM) coupled with power spectral density (PSD) analysis and digital image correlation (DIC) technique. Both PSD and DIC analysis results show that the PP phase significantly closes its pores by means of dilation of the nanofibrils surrounding …


Enhanced Reducibility And Conductivity Of Na/K-Doped Srti0.8Nb0.2O3, Guoliang Xiao, Sirikanda Nuansaeng, Lei Zhang, Suwit Suthirakun, Andreas Heyden, Hans-Conrad Zur Loye, Fanglin Chen Sep 2013

Enhanced Reducibility And Conductivity Of Na/K-Doped Srti0.8Nb0.2O3, Guoliang Xiao, Sirikanda Nuansaeng, Lei Zhang, Suwit Suthirakun, Andreas Heyden, Hans-Conrad Zur Loye, Fanglin Chen

Faculty Publications

Donor and acceptor co-doped SrTiO3 materials have shown interesting features in their conductivity and reducibility. In this work, 10 mol% Na+ or K+ as acceptor dopants have been introduced into the A-site of donor-doped strontium titanate, SrTi0.8Nb0.2O3, and the doping impact on their properties has been studied. By doping with Na or K, the sinterability of SrTi0.8Nb0.2O3 in reducing atmospheres has been improved. Na0.1Sr0.9Ti0.8Nb0.2O3 and K0.1Sr0.9Ti0.8Nb0.2O3 show metallic …


Cyclic Durability Of A Solid Oxide Fe-Air Redox Battery Operated At 650°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang Aug 2013

Cyclic Durability Of A Solid Oxide Fe-Air Redox Battery Operated At 650°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang

Faculty Publications

The recently developed rechargeable solid oxide metal-air redox battery has shown a great potential for applications in mid- to large-scale stationary energy storage. Cyclic durability is one of the most important requirements for stationary energy storage. In this study, we report the cyclic durability of a solid oxide Fe-air redox battery operated at 650°C. The battery was continuously cycled 100 times under a current density of 50 mA/cm2 with rather flat performance, producing an average specific energy of 760 Wh/kg-Fe at a round-trip efficiency of 55.5%. The post-test examination indicated that the performance losses could arise from the fuel-electrode …


Can Silver Be A Reliable Current Collector For Electrochemical Tests?, Yunhui Gong, Changyong Qin, Kevin Huang Nov 2012

Can Silver Be A Reliable Current Collector For Electrochemical Tests?, Yunhui Gong, Changyong Qin, Kevin Huang

Faculty Publications

The true functionality of a current collector employed in electrochemical cells is to ensure a low- resistance steady electrons flow between the cell and instrumentation without involving in any local electrochemical reactions of the electrode. In this study, we investigated the effect of curing temperature of a common current collector, silver, on the polarization area specific resistance (ASR) of a cathode. The results explicitly showed that at least one order of magnitude lower ASR for a cathode with Ag cured at 800°C than that cured at 650°C of the same cathode configuration. Microscopic analysis of the 800°C-cured cells revealed a …


The Effect Of Silicon Content On Impact Toughness Of T91 Grade Steels, Ajit K. Roy, Pankaj Kumar, Debajyoti Maitra Mar 2009

The Effect Of Silicon Content On Impact Toughness Of T91 Grade Steels, Ajit K. Roy, Pankaj Kumar, Debajyoti Maitra

Mechanical Engineering Faculty Research

The impact resistance of silicon (Si)-containing modified 9Cr-1Mo steels has been investigated within a temperature regime of -40 to 440°C using the Charpy method. The results indicate that the energies absorbed in fracturing the tested specimens were substantially lower at temperatures of -40, 25, and 75°C compared to those at elevated temperatures. Lower impact energies and higher ductile-to-brittle-transition-temperatures (DBTTs) were observed with the steels containing 1.5 and 1.9 wt.% Si. The steels containing higher Si levels exhibited both ductile and brittle failures at elevated temperatures. However, at lower temperatures, brittle failures characterized by cleavage and intergranular cracking were observed for …


Tensile Deformation Of A Nickel-Base Alloy At Elevated Temperatures, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam Aug 2008

Tensile Deformation Of A Nickel-Base Alloy At Elevated Temperatures, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam

Mechanical Engineering Faculty Research

The results of tensile testing involving Waspaloy indicate that the failure strain was gradually reduced at temperatures ranging between ambient and 300 °C. Further, serrations were observed in the engineering stress versus strain diagrams in the temperature range of 300-600 °C. The reduced failure strain and the formation of serrations in these temperature regimes could be the result of dynamic strain aging of this alloy. The extent of work hardening due to plastic deformation was reduced at temperatures above 300 °C. A combination of ductile and intergranular brittle failures was seen at temperatures above 600 °C. γ′ was detected at …


Tensile Properties Of Martensitic Stainless Steels At Elevated Temperatures, Ajit K. Roy, Srinivasarao R. Kukatla, Bhagath Yarlagadda, V. N. Potluri, Martin Lewis, Brendan O'Toole Apr 2005

Tensile Properties Of Martensitic Stainless Steels At Elevated Temperatures, Ajit K. Roy, Srinivasarao R. Kukatla, Bhagath Yarlagadda, V. N. Potluri, Martin Lewis, Brendan O'Toole

Mechanical Engineering Faculty Research

Tensile properties of quenched and tempered martensitic alloys EP-823, HT-9, and 422 were evaluated at temperatures ranging from ambient to 600 °C as a function of three different tempering times. The results indicated that the yield strength, ultimate tensile strength, and the failure strength were gradually reduced with increasing temperature. The ductility parameters were enhanced at elevated temperatures due to increased plastic flow. However, the tempering time did not significantly influence these properties. The evaluation of the fracture surfaces by scanning electron microscopy revealed reduced cracking and dimpled microstructures, indicating enhanced ductility at higher testing temperatures.