Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Novel Laser-Aided Machining And Polishing Process For Additive Manufacturing Materials With Multiple Endmill Emulating Scan Patterns, Mohammad Masud Parvez, Sahil Patel, Sriram Praneeth Isanaka, Frank W. Liou Oct 2021

A Novel Laser-Aided Machining And Polishing Process For Additive Manufacturing Materials With Multiple Endmill Emulating Scan Patterns, Mohammad Masud Parvez, Sahil Patel, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In additive manufacturing (AM), the surface roughness of the deposited parts remains significantly higher than the admissible range for most applications. Additionally, the surface topography of AM parts exhibits waviness profiles between tracks and layers. Therefore, post-processing is indispensable to improve surface quality. Laser-aided machining and polishing can be effective surface improvement processes that can be used due to their availability as the primary energy sources in many metal AM processes. While the initial roughness and waviness of the surface of most AM parts are very high, to achieve dimensional accuracy and minimize roughness, a high input energy density is …


Direct Energy Deposition Of Mo Powder Prepared By Electrode Induction Melting Gas Atomization, Goo Won Roh, Eun Soo Park, Jaeyun Moon, Hojun Lee, Jongmin Byun Jan 2021

Direct Energy Deposition Of Mo Powder Prepared By Electrode Induction Melting Gas Atomization, Goo Won Roh, Eun Soo Park, Jaeyun Moon, Hojun Lee, Jongmin Byun

Mechanical Engineering Faculty Research

Molybdenum (Mo) is used to form a barrier layer for metal wiring in displays or semiconductor devices. Recently, researches have been continuously attempted to fabricate Mo sputtering targets through additive manufacturing. in this study, spherical Mo powders with an average particle size of about 37 um were manufactured by electrode induction melting gas atomization. Subsequently, Mo layer with a thickness of 0.25 mm was formed by direct energy deposition in which the scan speed was set as a variable. According to the change of the scan speed, pores or cracks were found in the Mo deposition layer. Mo layer deposited …