Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Recent Developments In Timber Design & Its Impact On Carbon Emissions, Raquel Jackson Jun 2023

Recent Developments In Timber Design & Its Impact On Carbon Emissions, Raquel Jackson

Spectra Undergraduate Research Journal

This paper explores recent developments in timber building designs and its potential towards reducing carbon emissions. Carbon dioxide emissions are a growing issue worldwide as urbanization and industrialization continues to increase. The rising concentration of carbon dioxide emissions pose significant concerns towards public welfare and environmental health. Despite current methods to reduce greenhouse gasses, carbon emissions remain difficult to reduce from steel and concrete industries. Increasing timber use in building design is a possible solution. Increasing more timber in building design can help reduce carbon emissions due to the carbon-absorbing properties of the construction material. Timber as a construction material …


The Influence Of Environmental Tax And Technology On Different Air Pollution Emissions In Oecd Countries, Malak Ali Assaf May 2023

The Influence Of Environmental Tax And Technology On Different Air Pollution Emissions In Oecd Countries, Malak Ali Assaf

BAU Journal - Creative Sustainable Development

Although countries continuously employ taxation and technological measures to control air pollution in the Organization for Economic Co-operation and Development, the results of these practices should be evaluated to determine whether they reach their intended outcomes. This study used panel autoregressive distributed lag model to establish how environmental taxes and technology affects the emission of air pollutants (nitrogen oxides, Carbon dioxide, and particulate matter 2.5). Using secondary data present in the OECD Database and The World Bank, EViews panel was derived to create 3 model in which each of the three variables would be sufficiently explained by environmental tax, abatement …


Progress And Typical Case Analysis Of Demonstration Projects Of The Geological Sequestration And Utilization Of Co2, Liu Shiqi, Huang Fansheng, Du Ruibin, Chen Shiheng, Guan Yiting, Liu Yinghai, Wang Tao Apr 2023

Progress And Typical Case Analysis Of Demonstration Projects Of The Geological Sequestration And Utilization Of Co2, Liu Shiqi, Huang Fansheng, Du Ruibin, Chen Shiheng, Guan Yiting, Liu Yinghai, Wang Tao

Coal Geology & Exploration

The implementation of the geological sequestration and utilization of CO2 (CGSU) has considerable effects on CO2 emission reduction and is of great significance for the mitigation of global warming and the execution of the sustainable development strategy in China. Therefore, this study sorted the major methods for CGSU, made statistics of the global demonstration projects of CGSU, and primarily introduced the typical demonstration projects of CGSU in China. Furthermore, this study proposed prospects for the development trend of the CGSU technologies, which primarily include CO2 enhanced oil recovery (CO2-EOR), CO2 enhanced coalbed methane recovery …


A High-Performance Continuous-Flow Mea Reactor For Electroreduction Co2 To Formate, Pei-Xuan Liu, Lu-Wei Peng, Rui-Nan He, Lu-Lu Li, Jin-Li Qiao Jan 2022

A High-Performance Continuous-Flow Mea Reactor For Electroreduction Co2 To Formate, Pei-Xuan Liu, Lu-Wei Peng, Rui-Nan He, Lu-Lu Li, Jin-Li Qiao

Journal of Electrochemistry

The electrochemical carbon dioxide reduction reaction (CO2RR) is a promising approach to produce liquid fuels and industrial chemicals by utilizing intermittent renewable electricity for mitigating environmental problems. However, the traditional H-type reactor seriously limits the electrochemical performance of CO2RR due to the low CO2 solubility in electrolyte, and high ohmic resistance caused by the large distance between two electrodes, which is unbeneficial for industrial application. Herein, we demonstrated a high-performance continuous flow membranes electrode assembly (MEA) reactor based on a self-growing Cu/Sn bimetallic electrocatalyst in 0.5 mol·L-1 KHCO3 for converting CO2 to formate. …


A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang Oct 2020

A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang

Journal of Electrochemistry

The alkaline polymer electrolyte fuel cell (APEFC) has made appreciable progress in recent years but is still suffering performance loss during discharge with air as the oxidant. Several theories have been suggested to interpret the loss. However, efforts are still needed to reach a clear quantitative understanding. Based on the major experimental findings in combination with thermodynamics and kinetics of the reactions involved in the anode, this paper presents a model featuring layered carbonization in the anode and relevant grouped equations. The simulation results generated from the latter are compared with experiments, and possible principles to suppress the performance loss …


Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang Aug 2020

Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang

Journal of Electrochemistry

The electrochemical conversion of CO2 to chemical raw material for further utilization shows promising future to alleviate global warming and realize carbon cycle in nature, which is of great significance to the green chemistry and sustainable development. This review briefly introduces the advantages of CO2 electrochemical reduction (CO2ER) and its basic reaction principles, and summarizes the recent progress in a series of activity enhancement strategies based on nanosized metal catalysts. The influences of alloy effect, interface engineering, synergistic effect, surface defect engineering and support effect on the catalytic performance of nanosized metals for CO2ER …


Statuses, Challenges And Strategies In The Development Of Low-Temperature Carbon Dioxide Electroreduction Technology, Xu-Rui Zhang, Xiao-Lin Shao, Jin Yi, Yu-Yu Liu, Jiu-Jun Zhang Aug 2019

Statuses, Challenges And Strategies In The Development Of Low-Temperature Carbon Dioxide Electroreduction Technology, Xu-Rui Zhang, Xiao-Lin Shao, Jin Yi, Yu-Yu Liu, Jiu-Jun Zhang

Journal of Electrochemistry

Low-temperature carbon dioxide (CO2) electrochemical reduction technology is a hotspot for research and development in recent years as a way to reduce the negative impact of CO2 on the environment and to generate energy storage through converting electricity to low-carbon fuels. Although basic research on catalyst activity, product selectivity, and reaction mechanism has been widely reported, the design and practicality of catalytic stability and corresponding electrochemical reactor systems have not been given sufficient attention and systematic development. In this paper, two important factors affecting the development of CO2 electrochemical reduction technology in low temperature aqueous solution …


Recent Progress In Copper-Based Catalysts For Electrochemical Co2 Reduction, Wen Lei, Wei-Ping Xiao, De-Li Wang Aug 2019

Recent Progress In Copper-Based Catalysts For Electrochemical Co2 Reduction, Wen Lei, Wei-Ping Xiao, De-Li Wang

Journal of Electrochemistry

As the situation of energy crisis and environmental pollution become more and more serious, the electrochemical reduction of carbon dioxide (CO2) has attracted lots of attention because of its multiple meanings such as environment, resources and economic benefits. In this paper, the state of the art electrochemical reduction of CO2 in aqueous solution is reviewed, and the latest research progress in Cu-based catalysts with different structures and morphologies is summarized. In the end, the application prospects, opportunities and challenges of Cu-based materials are briefly presented to provide an outlook for future research directions.


Surface Free Energy Of Shale Gas In Niutitang Formation In Guizhou Province, Li Xijian, Yin Xin, Li Weiwei, Liu Shangping, Zhang Pei Jan 2019

Surface Free Energy Of Shale Gas In Niutitang Formation In Guizhou Province, Li Xijian, Yin Xin, Li Weiwei, Liu Shangping, Zhang Pei

Coal Geology & Exploration

In order to study the adsorption mechanism of shale for gas, the isothermal adsorption experiments on shale samples from wells Fengcan 1 and Tianma 1 in Guizhou Province were carried out at 50℃, 60℃, 80℃, and the isothermal adsorption curves of CH4 and CO2 were plotted, the shale surface free energy was calculated and the adsorption characteristics of CH4 and CO2 from shale were analyzed by the surface free energy. The results show that when the temperature is constant, the surface free energy of shale gas increases with the increase of pressure, and the change of …


Electrocarboxylation: An Effective Process For Fixation Of Co2 Into Organic Carboxylic Acids, Huan Wang, Jia-Xing Lu Jun 2017

Electrocarboxylation: An Effective Process For Fixation Of Co2 Into Organic Carboxylic Acids, Huan Wang, Jia-Xing Lu

Journal of Electrochemistry

Conversion and utilization of greenhouse gas carbon dioxide (CO2) have become more and more significant to the sustainable development of the global economy. Among them, electrocarboxylation of organic substrates is an effective process. Under mild conditions such as ambient temperature and pressure, carbocations generated by electroreduction of organic substrates can react with CO2 into corresponding carboxylic acids. This paper introduces the recent progress of our group in electrochemical carboxylation, including electrocarboxylation of varies active organic substrates and asymmetric electrocarboxylation.


The Problem Of The Anode Electrolyte In H-Type Electrolytic Cell For Electrochemical Reduction Of Carbon Dioxide, Rui Zhang, Wei-Xin Lv, Li-Xu Lei Feb 2017

The Problem Of The Anode Electrolyte In H-Type Electrolytic Cell For Electrochemical Reduction Of Carbon Dioxide, Rui Zhang, Wei-Xin Lv, Li-Xu Lei

Journal of Electrochemistry

Electrochemical reduction of carbon dioxide (CO2) was studied in the H-type electrolytic cell. It was found that the voltage between the cathode and the anode would increase during the long time electrolysis process, for this reason the electrolytic process would be unsustainable. After the experimental investigations carried out by constant potential electrolysis, constant current electrolysis, pH test and KHCO3 concentration analysis of anode electrolyte before and after the electrolysis, the increase in cell voltage might be caused by the following process: H+, that was generated from the anodic oxygen evolution reaction, reacted with HCO3 …


Thermoeconomic Optimization Of Cascade Refrigeration System Using Mixed Carbon Dioxide And Hydrocarbons At Low Temperature Circuit, Nasruddin Nasruddin, Arnas Arnas, Ahmad Faqih, Niccolo Giannetti Dec 2016

Thermoeconomic Optimization Of Cascade Refrigeration System Using Mixed Carbon Dioxide And Hydrocarbons At Low Temperature Circuit, Nasruddin Nasruddin, Arnas Arnas, Ahmad Faqih, Niccolo Giannetti

Makara Journal of Technology

Many applications and industrial processes require very low cooling temperature, such as cold storage in the biomedical field, requiring temperature below -80 °C. However, single-cycle refrigeration systems can only achieve the effective cooling temperature of -40 °C and, also, the performance of the cycle will decrease drastically for cooling temperatures lower than -35°C. Currently, most of cascade refrigeration systems use refrigerants that have ozone depletion potential (ODP) and global warming potential (GWP), therefore, in this study, a cascade system is simulated using a mixture of environmentally friendly refrigerants, namely, carbon dioxide and a hydrocarbon (propane, ethane or ethylene) as the …


Electrosynthesis Of Glycerol Carbonate From Co2 And Glycerol, Huan Wang, Mei-Xia Zhu, La-Xia Wu, Xiao-Ming Xu, Xue-Ru Zhao, Jia-Xing Lu Aug 2013

Electrosynthesis Of Glycerol Carbonate From Co2 And Glycerol, Huan Wang, Mei-Xia Zhu, La-Xia Wu, Xiao-Ming Xu, Xue-Ru Zhao, Jia-Xing Lu

Journal of Electrochemistry

Glycerol carbonate was obtained from glycerol and carbon dioxide under room temperature and normal pressure by electrochemical method. The effects of synthesis conditions, such as cathode, charge, current density and temperature, on the reaction of glycerol and carbon dioxide have been investigated. The yields of 73% were produced by electrosynthesis of carbonate under the optimized condition, which is much higher than that by common catalysis method. The electrochemical behavior of the reaction system has been studied by cyclic voltammetry, through which the reaction process has been proposed.


Mathematical Modeling And Applications For Concrete Carbonation, Ming-Te Liang, Shieng-Min Lin Mar 2003

Mathematical Modeling And Applications For Concrete Carbonation, Ming-Te Liang, Shieng-Min Lin

Journal of Marine Science and Technology

A new concept, carbon dioxide (CO2) transport in concrete, is proposed in this paper to describe solute-transport processes. Using this concept, a new one-dimensional mathematical model was developed to describe the transport phenomena of carbon dioxide in concrete structures. By treating transport phenomena as a concrete carbonation process, a one-dimensional linear partial differential equation was derived based on the principle of mass balance and convective-dispersive equation and was found the analytical solution by the separation of variables and the Laplace transform methods combined with some substitution approaches. The concrete carbonation numerical results were determined using parameters, such as the diffusion …


Mathematical Modeling And Prediction Method Of Concrete Carbonation And Its Applications, Ming Te Liang, Wenjun Qu, Chih-Hsin Liang Dec 2002

Mathematical Modeling And Prediction Method Of Concrete Carbonation And Its Applications, Ming Te Liang, Wenjun Qu, Chih-Hsin Liang

Journal of Marine Science and Technology

The carbonation process of concrete is principally a diffusion phenomenon. The penetration rate of carbon dioxide depends mainly on the concrete quality and the exposure condition. Based on both Fick’s first and second laws of linear diffusion equations, the threedimensional equation of conservation of mass is expressed. This equation can be reduced to two- and one- dimensional equations of conservation of mass which can predict the carbonation depth beneath corners and the general surface of concrete structures, respectively. The objectives of this investigation are to measure the depth of carbonation from the free surface of a concrete member and to …