Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Simulation Of Oxygen Control Technology In Applications Of Liquid Lead And Lead– Bismuth Eutectic Systems For Mitigating Materials Corrosion Using The Lattice Boltzmann Method, Emad Pouryazdanpanah Kermani May 2020

Simulation Of Oxygen Control Technology In Applications Of Liquid Lead And Lead– Bismuth Eutectic Systems For Mitigating Materials Corrosion Using The Lattice Boltzmann Method, Emad Pouryazdanpanah Kermani

UNLV Theses, Dissertations, Professional Papers, and Capstones

This dissertation is a study of material corrosion, along with solving momentum, energy, and mass transport equations by using the Lattice Boltzmann method (LBM) for the mesoscale modeling of oxygen transfer in liquid metals within a non-isothermal domain. One of the main goals of the project, proposed by the U.S. Department of Energy (DOE), is to control and decrease the corrosion of materials, which are often a common problem in advanced nuclear reactors and accelerator driven systems (ADS). One of the most efficient ways to decrease the corrosion rate is to add oxygen to the coolant to create an oxide …


Numerical Study Of Oxidation In Stainless Steel Alloy Ep-823 By Liquid Lead-Bismuth Eutectic, Rajyalakshmi Palaparty May 2018

Numerical Study Of Oxidation In Stainless Steel Alloy Ep-823 By Liquid Lead-Bismuth Eutectic, Rajyalakshmi Palaparty

UNLV Theses, Dissertations, Professional Papers, and Capstones

The oxidation of stainless steel is influenced by the presence of oxygen in the surrounding medium; the oxygen reacts with the alloy to form an oxide. In certain environments, such as nuclear reactor coolant systems, minimal oxidation of the stainless steel containment functions as a protective shield from corrosive coolants such as liquid lead-bismuth eutectic.

In the current study, this minimal oxidation is evaluated for a system in which corrosion-resistant stainless steel alloy EP-823 is subject to an environment of flowing oxygenated liquid lead-bismuth eutectic at a temperature of 743 K, whereby the thickness of the forming oxide layer is …


Study Of Corrosion Of Materials In The Sulfur-Iodine Hydrogen Production Cycle, Thao Trung Ho Jan 2009

Study Of Corrosion Of Materials In The Sulfur-Iodine Hydrogen Production Cycle, Thao Trung Ho

UNLV Theses, Dissertations, Professional Papers, and Capstones

Hydrogen is of great interest since the availability of traditional fossil fuels is in decline. Strictly speaking, hydrogen is not a primary source of energy but is an energy carrier, since energy typically must be used from another source (electricity, natural gas, coal, etc.) to produce it. Of hydrogen production techniques, the Sulfur-Iodine thermochemical water splitting process (S-I cycle), which was proposed by General Atomics (GA), is promising with its simplicity and high efficiency. Most of the chemicals are recycled except water. However, the S-I cycle operates in a harsh, corrosive environment in the presence of a mixture of iodine …


Oxidation Modeling By Means Of Molecular Dynamics, Chaiyod Soontrapa Jan 2009

Oxidation Modeling By Means Of Molecular Dynamics, Chaiyod Soontrapa

UNLV Theses, Dissertations, Professional Papers, and Capstones

Oxidation modeling is normally engineered to study systems at macroscopic scales, mostly in analytical forms based on diffusion theories. The associated time scale is usually in months, days, or minutes, and the length scale is in the order of microns. In this dissertation, oxidation modeling is performed at atomistic scale with the time and length scales in picoseconds and angstroms, respectively, using molecular dynamics. Molecular dynamics simulations generate trajectories of each atom or particle in a system according to the laws of physics. Studying oxidations under the atomistic point of view can offer new insights on atomic behaviors and influencing …