Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

The Effect Of Methylene Blue On Stearic Acid-Aged Quartz/Co2/Brine Wettability: Implications For Co2 Geo-Storage, Fatemah Alhammad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz May 2024

The Effect Of Methylene Blue On Stearic Acid-Aged Quartz/Co2/Brine Wettability: Implications For Co2 Geo-Storage, Fatemah Alhammad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Carbon dioxide sequestration in geological formations has been proposed as a promising solution to reach net zero carbon emissions but the success of underground CO2 storage in sandstone formations depends on the brine/CO2 wettability of sandstone. Research evidence showed that natural geological formation is hydrophobic even in the presence of minute concentration of inherent organic acids. This study investigates the effect of methylene blue (MB) on CO2 wettability of organic-acid contaminated quartz through the tilted plate contact angle measurement method. Pure quartz substrates were aged in a stearic acid/n-decane solution for one week and subsequently modified with different concentrations of …


Sandstone Wettability And Mixed Gas Composition: Unraveling The Impact Of Co2 In Hydrogen Geo-Storage, Zoha D. Isfehani, Amirmansour J. Jafari, Jalal Fahimpour, Mirhasan Hosseini, Stefan Iglauer, Alireza Keshavarz Jan 2024

Sandstone Wettability And Mixed Gas Composition: Unraveling The Impact Of Co2 In Hydrogen Geo-Storage, Zoha D. Isfehani, Amirmansour J. Jafari, Jalal Fahimpour, Mirhasan Hosseini, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Underground hydrogen storage (UHS) is gaining interest as a secure, long-term solution for storing hydrogen in porous geological formations. In UHS, a cushion gas like CO2 is crucial to maintain the reservoir pressure and optimize recovery. The concept of wettability plays a fundamental role in determining the system's multi-phase displacement characteristics in the porous media. However, there is a gap in the existing literature regarding the wettability of sandstone rocks under geo-storage conditions when H2 and CO2 are injected as the bulk and cushion gases, respectively. To address this gap, we conducted a study investigating the wettability hysteresis phenomenon by …


Enhancing Wettability Prediction In The Presence Of Organics For Hydrogen Geo-Storage Through Data-Driven Machine Learning Modeling Of Rock/H2/Brine Systems, Zeeshan Tariq, Muhammad Ali, Nurudeen Yekeen, Auby Baban, Bicheng Yan, Shuyu Sun, Hussein Hoteit Dec 2023

Enhancing Wettability Prediction In The Presence Of Organics For Hydrogen Geo-Storage Through Data-Driven Machine Learning Modeling Of Rock/H2/Brine Systems, Zeeshan Tariq, Muhammad Ali, Nurudeen Yekeen, Auby Baban, Bicheng Yan, Shuyu Sun, Hussein Hoteit

Research outputs 2022 to 2026

The success of geological H2 storage relies significantly on rock–H2–brine interactions and wettability. Experimentally assessing the H2 wettability of storage/caprocks as a function of thermos-physical conditions is arduous because of high H2 reactivity and embrittlement damages. Data-driven machine learning (ML) modeling predictions of rock–H2–brine wettability are less strenuous and more precise. They can be conducted at geo-storage conditions that are impossible or hazardous to attain in the laboratory. Thus, ML models were utilized in this research to accurately model the wettability behavior of a ternary system consisting of H2, rock minerals (quartz and mica), and brine at different operating geological …


Effect Of Methylene Blue On Wetting Characteristics Of Quartz/H2/Brine Systems: Implication For Hydrogen Geological Storage, Fatemah Alhamad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz Nov 2023

Effect Of Methylene Blue On Wetting Characteristics Of Quartz/H2/Brine Systems: Implication For Hydrogen Geological Storage, Fatemah Alhamad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Hydrogen (H2) is considered a promising replacement for fossil fuels due to its enormous potential as an environmentally friendly and sustainable option compared to carbon-based fossil fuels. However, storing the vast quantity of H2 required to satisfy the global energy demand on the earth's surface can be difficult due to its compressibility and volatility. The best option for large-scale storage is underground H2 storage (UHS), which can be retrieved when needed. Rock wettability is vital in UHS because it determines the H2 storage capacity, containment security, and potential withdrawal and injection rates. Organic acid inherent in storage formations could make …


Micro-Scale Wettability Of Carbonate Rocks Via High-Resolution Esem Imaging, Khaloud Al-Naimi, Muhammad Arif, Mahmoud Aboushanab, Dalaver Anjum, Mohammed Al Kobaisi, Md Motiur Rahman, Mohamed Mahmoud, Stefan Iglauer Sep 2023

Micro-Scale Wettability Of Carbonate Rocks Via High-Resolution Esem Imaging, Khaloud Al-Naimi, Muhammad Arif, Mahmoud Aboushanab, Dalaver Anjum, Mohammed Al Kobaisi, Md Motiur Rahman, Mohamed Mahmoud, Stefan Iglauer

Research outputs 2022 to 2026

The wettability of several materials has been traditionally quantified using macro-scale contact angles. However, precise identification of the three-phase contact (TPC) line is often difficult due to the resolution limit of macro-scale setups. Moreover, micro-level surface chemical heterogeneities can have a notable impact on the predicted wetting behavior which limits macro-scale contact angles. Thus, here, we investigate the micro-scale water wettability of condensed micro-droplets on carbonate rock surfaces via a high-resolution Environmental Scanning Electron Microscopy (ESEM). Macro- and micro-scale contact angles were evaluated under three conditions: 1) natural carbonate surfaces, 2) surfaces aged in crude oil, and 3) surfaces aged …


Influence Of Organics And Gas Mixing On Hydrogen/Brine And Methane/Brine Wettability Using Jordanian Oil Shale Rocks: Implications For Hydrogen Geological Storage, Amer Alanazi, Nurudeen Yekeen, Mujahid Ali, Muhammad Ali, Israa S. Abu-Mahfouz, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit Jun 2023

Influence Of Organics And Gas Mixing On Hydrogen/Brine And Methane/Brine Wettability Using Jordanian Oil Shale Rocks: Implications For Hydrogen Geological Storage, Amer Alanazi, Nurudeen Yekeen, Mujahid Ali, Muhammad Ali, Israa S. Abu-Mahfouz, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit

Research outputs 2022 to 2026

The substitution of fossil fuel with clean hydrogen (H2) has been identified as a promising route to achieve net zero carbon emissions by this century. However, enough H2 must be stored underground at an industrial scale to achieve this objective due to the low volumetric energy density of H2. In underground H2 storage, cushion gases, such as methane (CH4), are required to maintain a safe operational formation pressure during the withdrawal or injection of H2. The wetting characteristics of geological formations in the presence of H2, cushion gas, …


A Review Of Hydrogen/Rock/Brine Interaction: Implications For Hydrogen Geo-Storage, Masoud Aslannezhad, Muhammad Ali, Azim Kalantariasl, Mohammad Sayyafzadeh, Zhenjiang You, Stefan Iglauer, Alireza Keshavarz Mar 2023

A Review Of Hydrogen/Rock/Brine Interaction: Implications For Hydrogen Geo-Storage, Masoud Aslannezhad, Muhammad Ali, Azim Kalantariasl, Mohammad Sayyafzadeh, Zhenjiang You, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Hydrogen (H2) is currently considered a clean fuel to decrease anthropogenic greenhouse gas emissions and will play a vital role in climate change mitigation. Nevertheless, one of the primary challenges of achieving a complete H2 economy is the large-scale storage of H2, which is unsafe on the surface because H2 is highly compressible, volatile, and flammable. Hydrogen storage in geological formations could be a potential solution to this problem because of the abundance of such formations and their high storage capacities. Wettability plays a critical role in the displacement of formation water and determines …


Using Magnesium Oxide Nanoparticles In A Magnetic Field To Enhance Oil Production From Oil-Wet Carbonate Reservoirs, F. Amrouche, M. J. Blunt, Stefan Iglauer, M. Short, T. Crosbie, E. Cordero, D. Xu Jan 2023

Using Magnesium Oxide Nanoparticles In A Magnetic Field To Enhance Oil Production From Oil-Wet Carbonate Reservoirs, F. Amrouche, M. J. Blunt, Stefan Iglauer, M. Short, T. Crosbie, E. Cordero, D. Xu

Research outputs 2022 to 2026

Enhanced oil production can maximise yield from depleted reservoirs, and in the face of dwindling global oil reserves can reduce the need for exploratory drilling during the transition away from fossil fuels. A hybrid technique, merging a magnetic field (MF) and magnesium oxide (MgO) nanoparticles (NPs), was investigated as a potential method of enhancing oil production from oil-wet carbonate reservoirs. The impact of this hybrid technique on rock wettability, zeta potential, and interfacial tension was also investigated. Displacement experiments were carried out on oil-wet Austin chalk – a laboratory carbonate rock analogue – using MgO NPs in deionized water (DW) …


Live Imaging Of Micro And Macro Wettability Variations Of Carbonate Oil Reservoirs For Enhanced Oil Recovery And Co/ Trapping/Storage, Anastasia Ivanova, A. Orekhov, S. Markovic, Stefan Iglauer, P. Grishin, A. Cheremisin Dec 2022

Live Imaging Of Micro And Macro Wettability Variations Of Carbonate Oil Reservoirs For Enhanced Oil Recovery And Co/ Trapping/Storage, Anastasia Ivanova, A. Orekhov, S. Markovic, Stefan Iglauer, P. Grishin, A. Cheremisin

Research outputs 2022 to 2026

Carbonate hydrocarbon reservoirs are considered as potential candidates for chemically enhanced oil recovery and for CO² geological storage. However, investigation of one main controlling parameter—wettability—is usually performed by conventional integral methods at the core-scale. Moreover, literature reports show that wettability distribution may vary at the micro-scale due to the chemical heterogeneity of the reservoir and residing fluids. These differences may profoundly affect the derivation of other reservoir parameters such as relative permeability and capillary pressure, thus rendering subsequent simulations inaccurate. Here we developed an innovative approach by comparing the wettability distribution on carbonates at micro and macro-scale by combining live-imaging …


Fluid–Rock Interactions And Its Implications On Eor: Critical Analysis, Experimental Techniques And Knowledge Gaps, Abubakar Isah, Muhammad Arif, Amjed Hassan, Mohamed Mahmoud, Stefan Iglauer Nov 2022

Fluid–Rock Interactions And Its Implications On Eor: Critical Analysis, Experimental Techniques And Knowledge Gaps, Abubakar Isah, Muhammad Arif, Amjed Hassan, Mohamed Mahmoud, Stefan Iglauer

Research outputs 2022 to 2026

Characterization of fluid–rock interactions is essential for a broad range of subsurface applications such as understanding fluid flow in porous medium and enhanced oil recovery predictions. Enhanced oil recovery (EOR) is crucial in oil and gas production operations, it entails injecting fluids into the reservoir to enhance productivity. When fluids are injected, interactions occur between the injected fluids and the reservoir rock/fluids; and the outcomes of fluid–rock interactions critically impact the fluid flow in porous medium and the associated oil recovery. Furthermore, the associated changes in reservoir properties (porosity, permeability etc.) and flow behavior (i.e. wettability alteration and relative permeability …


Contact Angles Of A Brine On A Bituminous Coal In Compressed Hydrogen, Rossen Sedev, Hamed Akhondzadeh, Mujahid Ali, Alireza Keshavarz, Stefan Iglauer Apr 2022

Contact Angles Of A Brine On A Bituminous Coal In Compressed Hydrogen, Rossen Sedev, Hamed Akhondzadeh, Mujahid Ali, Alireza Keshavarz, Stefan Iglauer

Research outputs 2022 to 2026

Hydrogen storage is a main issue in the establishment of a hydrogen economy. Geo-storage could be a viable solution if hydrogen could be injected into and withdrawn from suitable geological formations, reversibly and reliably. Rock wettability is a major factor as it affects injectivities, withdrawal rates, storage capacities, and containment security. We report here the contact angles of a brine on the surface of a bituminous coal in a pressurized hydrogen atmosphere. Under realistic geo-storage conditions the coal surface was weakly water-wet. Hydrogen pressure increased brine contact angles at 25°C but did not have an impact at 50 or 70°C. …


Assessment Of Wettability And Rock-Fluid Interfacial Tension Of Caprock: Implications For Hydrogen And Carbon Dioxide Geo-Storage, Muhammad Ali, Bin Pan, Nurudeen Yekeen, Sarmad Al-Anssari, Amer Al-Anazi, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit Apr 2022

Assessment Of Wettability And Rock-Fluid Interfacial Tension Of Caprock: Implications For Hydrogen And Carbon Dioxide Geo-Storage, Muhammad Ali, Bin Pan, Nurudeen Yekeen, Sarmad Al-Anssari, Amer Al-Anazi, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit

Research outputs 2022 to 2026

Underground hydrogen (H2) storage (UHS) and carbon dioxide (CO2) geo-storage (CGS) are prominent methods of meeting global energy needs and enabling a low-carbon global economy. The pore-scale distribution, reservoir-scale storage capacity, and containment security of H2 and CO2 are significantly influenced by interfacial properties, including the equilibrium contact angle (θE) and solid-liquid and solid-gas interfacial tensions (γSL and γSG). However, due to the technical constraints of experimentally determining these parameters, they are often calculated based on advancing and receding contact angle values. There is a scarcity of θE, γSL, and γSG data, particularly related to the hydrogen structural sealing potential …


Influence Of Organic Molecules On Wetting Characteristics Of Mica/H2/Brine Systems: Implications For Hydrogen Structural Trapping Capacities, Muhammad Ali, Nurudeen Yekeen, Nilanjan Pal, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit Feb 2022

Influence Of Organic Molecules On Wetting Characteristics Of Mica/H2/Brine Systems: Implications For Hydrogen Structural Trapping Capacities, Muhammad Ali, Nurudeen Yekeen, Nilanjan Pal, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit

Research outputs 2022 to 2026

Hypothesis:

Actualization of the hydrogen (H2) economy and decarbonization goals can be achieved with feasible large-scale H2 geo-storage. Geological formations are heterogeneous, and their wetting characteristics play a crucial role in the presence of H2, which controls the pore-scale distribution of the fluids and sealing capacities of caprocks. Organic acids are readily available in geo-storage formations in minute quantities, but they highly tend to increase the hydrophobicity of storage formations. However, there is a paucity of data on the effects of organic acid concentrations and types on the H2-wettability of caprock-representative minerals and …


Recent Advances In Carbon Dioxide Geological Storage, Experimental Procedures, Influencing Parameters, And Future Outlook, Muhammad Ali, Nilesh Kumar Jha, Nilanjan Pal, Alireza Keshavarz, Hussein Hoteit, Mohammad Sarmadivaleh Feb 2022

Recent Advances In Carbon Dioxide Geological Storage, Experimental Procedures, Influencing Parameters, And Future Outlook, Muhammad Ali, Nilesh Kumar Jha, Nilanjan Pal, Alireza Keshavarz, Hussein Hoteit, Mohammad Sarmadivaleh

Research outputs 2022 to 2026

The oxidation of fossil fuels produces billions of tons of anthropogenic carbon dioxide (CO2) emissions from stationary and nonstationary sources per annum, contributing to global warming. The natural carbon cycle consumes a portion of CO2 emissions from the atmosphere. In contrast, substantial CO2 emissions accumulate, making it the largest contributor to greenhouse gas emissions and causing a rise in the planet's temperature. The Earth's temperature was estimated to be 1 °C higher in 2017 compared to the mid-twentieth century. A solution to this problem is CO2 storage in underground formations, abundant throughout the world. Millions …


Optimum Geological Storage Depths For Structural H2 Geo-Storage, Stefan Iglauer Jan 2022

Optimum Geological Storage Depths For Structural H2 Geo-Storage, Stefan Iglauer

Research outputs 2022 to 2026

H2 geo-storage has been suggested as a key technology with which large quantities of H2 can be stored and withdrawn again rapidly. One option which is currently explored is H2 storage in sedimentary geologic formations which are geographically widespread and potentially provide large storage space. The mechanism which keeps the buoyant H2 in the subsurface is structural trapping where a caprock prevents the H2 from rising by capillary forces. It is therefore important to assess how much H2 can be stored via structural trapping under given geo-thermal conditions. This structural trapping capacity is thus …