Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

High Temperatures And Low Soil Moisture Synergistically Reduce Switchgrass Yields From Marginal Field Sites And Inhibit Fermentation, Sarvada Chipkar, Kevin Kahmark, Sven Bohm, Mir Zaman Hussain, Leela Joshi, Karleigh M. Krieg, Jacob Aguado, Jasmine Cassidy, Pablo Lozano, Kevin Garland, Andrea Senyk, Derek J. Debrauske, Elizabeth Whelan, Morgan Davies, Paul Urban, G. Philip Robertson, Trey K. Sato, Stephen K. Hamilton, Kurt D. Thelen, Rebecca Ong Feb 2024

High Temperatures And Low Soil Moisture Synergistically Reduce Switchgrass Yields From Marginal Field Sites And Inhibit Fermentation, Sarvada Chipkar, Kevin Kahmark, Sven Bohm, Mir Zaman Hussain, Leela Joshi, Karleigh M. Krieg, Jacob Aguado, Jasmine Cassidy, Pablo Lozano, Kevin Garland, Andrea Senyk, Derek J. Debrauske, Elizabeth Whelan, Morgan Davies, Paul Urban, G. Philip Robertson, Trey K. Sato, Stephen K. Hamilton, Kurt D. Thelen, Rebecca Ong

Michigan Tech Publications, Part 2

‘Marginal lands’ are low productivity sites abandoned from agriculture for reasons such as low or high soil water content, challenging topography, or nutrient deficiency. To avoid competition with crop production, cellulosic bioenergy crops have been proposed for cultivation on marginal lands, however on these sites they may be more strongly affected by environmental stresses such as low soil water content. In this study we used rainout shelters to induce low soil moisture on marginal lands and determine the effect of soil water stress on switchgrass growth and the subsequent production of bioethanol. Five marginal land sites that span a latitudinal …


Coexistence Of Specialist And Generalist Species Within Mixed Plastic Derivative-Utilizing Microbial Communities, Laura G. Schaerer, Lindsay I. Putman, Isaac Bigcraft, Emma Byrne, Daniel G. Kulas, Ali Zolghadr, Sulihat Aloba, Rebecca Ong, David Shonnard, Stephen Techtmann Oct 2023

Coexistence Of Specialist And Generalist Species Within Mixed Plastic Derivative-Utilizing Microbial Communities, Laura G. Schaerer, Lindsay I. Putman, Isaac Bigcraft, Emma Byrne, Daniel G. Kulas, Ali Zolghadr, Sulihat Aloba, Rebecca Ong, David Shonnard, Stephen Techtmann

Michigan Tech Publications, Part 2

BACKGROUND Plastic-degrading microbial isolates offer great potential to degrade, transform, and upcycle plastic waste. Tandem chemical and biological processing of plastic wastes has been shown to substantially increase the rates of plastic degradation however, the focus of this work has been almost entirely on microbial isolates (either bioengineered or naturally occurring). We propose that a microbial community has even greater potential for plastic upcycling. A microbial community has greater metabolic diversity to process mixed plastic waste streams and has built-in functional redundancy for optimal resilience. RESULTS Here, we used two plastic-derivative degrading communities as a model system to investigate the …


Evolution Of Glassy Carbon Derived From Pyrolysis Of Furan Resin, Josh Kemppainen, Ivan Gallegos, Aaron Krieg, Jacob R. Gissinger, Kristopher E. Wise, Margaret Kowalik, Julia A. King, S. Gowtham, Adri Van Duin, Gregory Odegard Oct 2023

Evolution Of Glassy Carbon Derived From Pyrolysis Of Furan Resin, Josh Kemppainen, Ivan Gallegos, Aaron Krieg, Jacob R. Gissinger, Kristopher E. Wise, Margaret Kowalik, Julia A. King, S. Gowtham, Adri Van Duin, Gregory Odegard

Michigan Tech Publications, Part 2

Glassy carbon (GC) material derived from pyrolyzed furan resin was modeled by using reactive molecular dynamics (MD) simulations. The MD polymerization simulation protocols to cure the furan resin precursor material are validated via comparison of the predicted density and Young's modulus with experimental values. The MD pyrolysis simulations protocols to pyrolyze the furan resin precursor is validated by comparison of calculated density, Young's modulus, carbon content, sp carbon content, the in-plane crystallite size, out-of-plane crystallite stacking height, and interplanar crystallite spacing with experimental results from the literature for furan resin derived GC. The modeling methodology established in this work can …


Ph Gradients In Spatially Non-Uniform Ac Electric Fields Around The Charging Frequency; A Study Of Two Different Geometries And Electrode Passivation, Azade Tahmasebi, Sanaz Habibi, Jeana Collins, Ran An, Esmaeil Dehdashti, Adrienne Minerick Aug 2023

Ph Gradients In Spatially Non-Uniform Ac Electric Fields Around The Charging Frequency; A Study Of Two Different Geometries And Electrode Passivation, Azade Tahmasebi, Sanaz Habibi, Jeana Collins, Ran An, Esmaeil Dehdashti, Adrienne Minerick

Michigan Tech Publications, Part 2

Dielectrophoresis (DEP), a precision nonlinear electrokinetic tool utilized within microfluidic devices, can induce bioparticle polarization that manifests as motion in the electric field; this phenomenon has been leveraged for phenotypic cellular and biomolecular detection, making DEP invaluable for diagnostic applications. As device operation times lengthen, reproducibility and precision decrease, which has been postulated to be caused by ion gradients within the supporting electrolyte medium. This research focuses on characterizing pH gradients above, at, and below the electrode charging frequency (0.2–1.4 times charging frequency) in an aqueous electrolyte solution in order to extend the parameter space for which microdevice-imposed artifacts on …


Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi Jan 2023

Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi

Michigan Tech Publications, Part 2

Conductive biohybrid cell-material systems have applications in bioelectronics and biorobotics. To date, conductive scaffolds are limited to those with low electrical conductivity or 2D sheets. Here, 3D biohybrid conductive systems are developed using fibroblasts or cardiomyocytes integrated with carbon nanotube (CNT) forests that are densified due to interactions with a gelatin coating. CNT forest scaffolds with a height range of 120–240 µm and an average electrical conductivity of 0.6 S/cm are developed and shown to be cytocompatible as evidenced from greater than 89% viability measured by live-dead assay on both cells on day 1. The cells spread on top and …