Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Compatibility Investigation Of Waste Plastics In Bitumen Via A Molecular Dynamics Method, Hui Yao, Xin Li, Hancheng Dan, Qingli Dai, Zhanping You Nov 2023

Compatibility Investigation Of Waste Plastics In Bitumen Via A Molecular Dynamics Method, Hui Yao, Xin Li, Hancheng Dan, Qingli Dai, Zhanping You

Michigan Tech Publications, Part 2

The compatibility between waste plastic polymers and bitumen is the most challenging issue hindering the improvement of modified bitumen performance. The current practice of recycled waste plastics includes the use of polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), etc. This study was designed to investigate the compatibility of different waste plastic polymers with bitumen binders by conducting molecular dynamics (MD) simulations at different temperatures. The molecular models of these materials were constructed in this study for the compatibility analysis, and they include the base bitumen, polymers (PVC, PP, and PE), polymer- bitumen blending systems. Using the output and related calculations …


Establishing Physical And Chemical Mechanisms Of Polymerization And Pyrolysis Of Phenolic Resins For Carbon-Carbon Composites, Ivan Gallegos, Josh Kemppainen, Jacob R. Gissinger, Malgorzata Kowalik, Adri Van Duin, Kristopher E. Wise, S. Gowtham, Gregory Odegard Sep 2023

Establishing Physical And Chemical Mechanisms Of Polymerization And Pyrolysis Of Phenolic Resins For Carbon-Carbon Composites, Ivan Gallegos, Josh Kemppainen, Jacob R. Gissinger, Malgorzata Kowalik, Adri Van Duin, Kristopher E. Wise, S. Gowtham, Gregory Odegard

Michigan Tech Publications, Part 2

The complex structural and chemical changes that occur during polymerization and pyrolysis critically affect material properties but are difficult to characterize in situ. This work presents a novel, experimentally validated methodology for modeling the complete polymerization and pyrolysis processes for phenolic resin using reactive molecular dynamics. The polymerization simulations produced polymerized structures with mass densities of 1.24 ± 0.01 g/cm3 and Young's moduli of 3.50 ± 0.64 GPa, which are in good agreement with experimental values. The structural properties of the subsequently pyrolyzed structures were also found to be in good agreement with experimental X-ray data for the phenolic-derived carbon …