Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler Mar 2024

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler

Faculty Publications

Ferroelectricity in hafnium zirconium oxide (Hf1−xZrxO2) and the factors that impact it have been a popular research topic since its discovery in 2011. Although the general trends are known, the interactions between fabrication parameters and their effect on the ferroelectricity of Hf1−xZrxO2 require further investigation. In this paper, we present a statistical study and a model that relates Zr concentration (x), film thickness (tf), and annealing temperature (Ta) with the remanent polarization (Pr) in tungsten (W)-capped Hf1−xZrxO2. …


Porous Silica Nanotube Thin Films As Thermally Insulating Barrier Coatings, Derric B. Syme, Jason M. Lund, Brian D. Jensen, Robert C. Davis, Richard R. Vanfleet, Brian D. Iverson Mar 2020

Porous Silica Nanotube Thin Films As Thermally Insulating Barrier Coatings, Derric B. Syme, Jason M. Lund, Brian D. Jensen, Robert C. Davis, Richard R. Vanfleet, Brian D. Iverson

Faculty Publications

The fabrication and examination of a porous silica thin film, potentially for use as an insulating thin film, were investigated. A vertically aligned carbon nanotube (CNT) forest, created by chemical vapor deposition (CVD), was used as scaffolding to construct the porous film. Silicon was deposited on the CNT forest using low-pressure CVD (LPCVD) and then oxidized to remove the CNTs and convert the silicon to silica for electrical or thermal passivation (e.g., thermal barrier). Thermal conductivity was determined using a 1D heat-transfer analysis that equated radiative heat loss in a vacuum with conduction through the substrate and thin film stack. …


Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs that remain …


Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey Oct 2019

Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey

Faculty Publications

Titanium nitride is widely used in plasmonic applications, due to its robustness and optical properties which resemble those of gold. Despite this interest, the nonlinear properties have only recently begun to be investigated. In this work, beam deflection and non-degenerate femtosecond pump-probe spectroscopy (800 nm pump and 650 nm probe) were used to measure the real and imaginary transient nonlinear response of 30-nm-thick TiN films on sapphire and fused silica in the metallic region governed by Fermi-smearing nonlinearities. In contrast to other metals, it is found that TiN exhibits non-instantaneous positive refraction and reverse saturable absorption whose relaxation is dominated …


Atomic Layer Deposition On Porous Materials: Problems With Conventional Approaches To Catalyst And Fuel Cell Electrode Preparation, Tzia Ming Onn, Rainer Küngas, Paolo Fornasiero, Kevin Huang, Raymond J. Gorte Mar 2018

Atomic Layer Deposition On Porous Materials: Problems With Conventional Approaches To Catalyst And Fuel Cell Electrode Preparation, Tzia Ming Onn, Rainer Küngas, Paolo Fornasiero, Kevin Huang, Raymond J. Gorte

Faculty Publications

Atomic layer deposition (ALD) offers exciting possibilities for controlling the structure and composition of surfaces on the atomic scale in heterogeneous catalysts and solid oxide fuel cell (SOFC) electrodes. However, while ALD procedures and equipment are well developed for applications involving flat surfaces, the conditions required for ALD in porous materials with a large surface area need to be very different. The materials (e.g., rare earths and other functional oxides) that are of interest for catalytic applications will also be different. For flat surfaces, rapid cycling, enabled by high carrier-gas flow rates, is necessary in order to rapidly grow thicker …


Improved Terahertz Modulation Using Germanium Telluride (Gete) Chalcogenide Thin Films, Alexander H. Gwin, Christopher H. Kodama, Tod V. Laurvick, Ronald Coutu Jr., Philip F. Taday Jul 2015

Improved Terahertz Modulation Using Germanium Telluride (Gete) Chalcogenide Thin Films, Alexander H. Gwin, Christopher H. Kodama, Tod V. Laurvick, Ronald Coutu Jr., Philip F. Taday

Faculty Publications

We demonstrate improved terahertz (THz) modulation using thermally crystallized germanium telluride (GeTe) thin films. GeTe is a chalcogenide material that exhibits a nonvolatile, amorphous to crystalline phase change at approximately 200 °C, as well as six orders of magnitude decreased electrical resistivity. In this study, amorphous GeTe thin films were sputtered on sapphire substrates and then tested using THz time-domain spectroscopy (THz-TDS). The test samples, heated in-situ while collecting THz-TDS measurements, exhibited a gradual absorbance increase, an abrupt nonvolatile reduction at the transition temperature, followed by another gradual increase in absorbance. The transition temperature was verified by conducting similar thermal …


In Situ Study Of The Role Of Substrate Temperature During Atomic Layer Deposition Of Hfo2 On Inp, H. Dong, Santosh Kc, X. Qin, B. Brennan, S. Mcdonnell, D. Zhernokletov, C. Hinkle, J. Kim, K. Cho, R. Wallace Oct 2013

In Situ Study Of The Role Of Substrate Temperature During Atomic Layer Deposition Of Hfo2 On Inp, H. Dong, Santosh Kc, X. Qin, B. Brennan, S. Mcdonnell, D. Zhernokletov, C. Hinkle, J. Kim, K. Cho, R. Wallace

Faculty Publications

The dependence of the “self cleaning” effect of the substrate oxides on substrate temperature during atomic layer deposition (ALD) of HfO2 on various chemically treated and native oxide InP (100) substrates is investigated using in situ X-ray photoelectron spectroscopy. The removal of In-oxide is found to be more efficient at higher ALD temperatures. The P oxidation states on native oxide and acid etched samples are seen to change, with the total P-oxide concentration remaining constant, after 10 cycles of ALD HfO2 at different temperatures. An (NH4)2 S treatment is seen to effectively remove native oxides and passivate the InP surfaces …


Indium Diffusion Through High-K Dielectrics In High-K/Inp Stacks, H. Dong, W. Cabrera, R. Galatage, Santosh Kc, B. Brennan, X. Qin, S. Mcdonnell, D. Zhernokletov, C. Hinkle, K. Cho, Y. Chabal, R. Wallace Aug 2013

Indium Diffusion Through High-K Dielectrics In High-K/Inp Stacks, H. Dong, W. Cabrera, R. Galatage, Santosh Kc, B. Brennan, X. Qin, S. Mcdonnell, D. Zhernokletov, C. Hinkle, K. Cho, Y. Chabal, R. Wallace

Faculty Publications

Evidence of indium diffusion through high-k dielectric (Al2O3 and HfO2) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a POx rich interface.High mobility III-V channel materials are contenders to replace Si in semiconductor devices like metal oxide semiconductor filed effect transistors (MOSFETs) for the sub 22 nm technology node.1 Extensive research is being carried out to determine the validity of these III-V materials for use as the channel, in a variety of …


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Jan 2013

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Faculty Publications

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi Nov 2011

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi

Faculty Publications

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses …


An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason R. Hattrick-Simpers, I. Takeuchi, E. J. Heilweil, L. A. Bendersky Jan 2009

An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason R. Hattrick-Simpers, I. Takeuchi, E. J. Heilweil, L. A. Bendersky

Faculty Publications

We have developed an infrared imaging setup enabling in situ infrared images to be acquired, and expanded on capabilities of an infrared imaging as a high-throughput screening technique, determination of a critical thickness of a Pd capping layer which significantly blocks infrared emission from below, enhancement of sensitivity to hydrogenation and dehydrogenation by normalizing raw infrared intensity of a Mg thin film to an inert reference, rapid and systematic screening of hydrogenation and dehydrogenation properties of a Mg–Ni composition spread covered by a thickness gradient Pd capping layer, and detection of formation of a Mg2Si phase in a …


Mechanics Of Hydrogenated Amorphous Carbon Deposits From Electron-Beam-Induced Deposition Of Paraffin Precursor, W. Ding, D. A. Dikin, X. Chen, R. D. Piner, R. S. Ruoff, E. Zussman, X. Wang, Xiaodong Li Jul 2005

Mechanics Of Hydrogenated Amorphous Carbon Deposits From Electron-Beam-Induced Deposition Of Paraffin Precursor, W. Ding, D. A. Dikin, X. Chen, R. D. Piner, R. S. Ruoff, E. Zussman, X. Wang, Xiaodong Li

Faculty Publications

Many experiments on the mechanics of nanostructures require the creation of rigid clamps at specific locations. In this work, electron-beam-induced deposition(EBID) has been used to depositcarbonfilms that are similar to those that have recently been used for clamping nanostructures. The film deposition rate was accelerated by placing a paraffin source of hydrocarbon near the area where the EBIDdeposits were made. High-resolution transmission electron microscopy, electron-energy-loss spectroscopy, Raman spectroscopy, secondary-ion-mass spectrometry, and nanoindentation were used to characterize the chemical composition and the mechanics of the carbonaceous deposits. The typical EBIDdeposit was found to be hydrogenated amorphous carbon (a-C:H) having …


Proton Diffusion In Nickel Hydroxide: Prediction Of Active Material Utilization, Sathya Motupally, Christopher C. Streinz, John W. Weidner Jan 1998

Proton Diffusion In Nickel Hydroxide: Prediction Of Active Material Utilization, Sathya Motupally, Christopher C. Streinz, John W. Weidner

Faculty Publications

Galvanostatic charge and discharge experiments reveal that the active material in nickel electrodes cannot be fully accessed at high currents or for thick films. It has been proposed that the utilization of the active material is controlled by the diffusion rate of protons through the film. This hypothesis is supported by the good agreement between mathematical simulations of material utilization and experimental data over a range of charge and discharge currents and film thicknesses. Furthermore, the fraction of material utilized is larger on charge than on discharge. The asymmetry on charge and discharge is due to a diffusion coefficient that …


The Role Of Oxygen At The Second Discharge Plateau Of Nickel Hydroxide, Sathya Motupally, Mukul Jain, Venkat Srinivasan, John W. Weidner Jan 1998

The Role Of Oxygen At The Second Discharge Plateau Of Nickel Hydroxide, Sathya Motupally, Mukul Jain, Venkat Srinivasan, John W. Weidner

Faculty Publications

It was shown that the appearance of a secondary discharge plateau approximately 400 mV below the primary plateau can result from the reduction of oxygen. During the galvanostatic discharge of planar nickel-hydroxide films at room temperature and in 3 weight percent KOH solutions, the second discharge plateau was observed only in the presence of dissolved oxygen in the electrolyte. When the solution was deoxygenated, no residual capacity could be extracted from the films even at low discharge rates or from overcharged films. In addition, the duration of the second plateau is inversely proportional to the square of the discharge current, …


Ellipsometric And Raman Spectroscopic Study Of Thermally Formed Films On Titanium, E. Hristova, Lj. Arsov, Branko N. Popov, Ralph E. White Jan 1997

Ellipsometric And Raman Spectroscopic Study Of Thermally Formed Films On Titanium, E. Hristova, Lj. Arsov, Branko N. Popov, Ralph E. White

Faculty Publications

Thermal films on titanium surfaces were formed by heating titanium samples in air at atmospheric pressure. The optical constants, thickness, and structure of the formed films at various temperatures and times of heating were investigated by ellipsometry and Raman spectroscopy. The complex index of refraction and the thickness of generated films were determined by comparing the experimental loci and obtained by ellipsometric measurements with theoretical computed vs. curves. It was found that the thickness in homogeneity and porosity of formed films increase with increasing temperature and the duration of the thermal treatment. Beyond a certain critical temperature, the appearance of …


Microstructure And Deposition Rate Of Aluminum Thin Films From Chemical Vapor Deposition With Dimethylethylamine Alane, Byoung-Youp Kim, Xiaodong Li, Shi-Woo Rhee Jun 1996

Microstructure And Deposition Rate Of Aluminum Thin Films From Chemical Vapor Deposition With Dimethylethylamine Alane, Byoung-Youp Kim, Xiaodong Li, Shi-Woo Rhee

Faculty Publications

Deposition of aluminumfilm from DMEAA in the temperature range of 100–300 °C has been studied. In this temperature range, there is a maximum deposition rate at around 150 °C. The film deposited at 190 °C has elongated blocklike grain shapes, which are ∼600 nm in width and 930 nm in length. Grains in the film deposited at 150 °C showed an equiaxed structure with grain size in the range of 100–300 nm in a film with 600 nm thickness. Aluminum oxide particle inclusion was observed especially at high deposition temperature. Plausible reaction pathways of DMEAA dissociation were suggested to explain …


Structural Characterization Of Aluminum Films Deposited On Sputtered-Titanium Nitride/ Silicon Substrate By Metalorganic Chemical Vapor Deposition From Dimethylethylamine Alane, Xiaodong Li, Byoung-Youp Kim, Shi-Woo Rhee Dec 1995

Structural Characterization Of Aluminum Films Deposited On Sputtered-Titanium Nitride/ Silicon Substrate By Metalorganic Chemical Vapor Deposition From Dimethylethylamine Alane, Xiaodong Li, Byoung-Youp Kim, Shi-Woo Rhee

Faculty Publications

Alfilmsdeposited on sputtered‐TiN/Si substrate by metalorganic chemical vapor deposition(MOCVD) from dimethylethylamine alane (DMEAA) were characterized using x‐ray diffraction(XRD),Auger electron spectroscopy(AES),atomic force microscopy(AFM), and transmission electron microscopy (TEM). The TiN filmsputtered on the Si has a preferred orientation along the growth direction with the 〈111〉 of the film parallel to the Si〈111〉. Sputtering of the TiN film on the Si induced strains at the interface. The TiN/Si interface is flat while the Al/TiN interface is rough. There exist many dislocations at the Al/TiN interface. The Al2O3 phase was formed at the Al/TiN interface during the early stages of …


Proton Diffusion In Nickel Hydroxide Films: Measurement Of The Diffusion Coefficient As A Function Of State Of Charge, Sathya Motupally, Christopher C. Streinz, John W. Weidner Jan 1995

Proton Diffusion In Nickel Hydroxide Films: Measurement Of The Diffusion Coefficient As A Function Of State Of Charge, Sathya Motupally, Christopher C. Streinz, John W. Weidner

Faculty Publications

Electrochemical impedance spectroscopy (EIS) was used to measure the solid-state diffusion coefficient of protons in nickel hydroxide films at room temperature as a function of state of charge (SOC). A model for the complex faradaic impedance of the nickel hydroxide active material is presented and used to extract the diffusion coefficient of protons from the EIS data. Impedance data over a range of frequencies can be used to extract a constant diffusion coefficient without the knowledge of the initial mobile proton concentration or the form of the charge-transfer kinetic expression. The proton diffusion coefficient is a strong function of SOC …


Low Cost Schottky Barrier Solar Cells Fabricated On Cdse And Sb2S3 Films Chemically Deposited With Silicotungstic Acid, O. Savadogo, K. C. Mandal Oct 1994

Low Cost Schottky Barrier Solar Cells Fabricated On Cdse And Sb2S3 Films Chemically Deposited With Silicotungstic Acid, O. Savadogo, K. C. Mandal

Faculty Publications

No abstract provided.


Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal Jul 1993

Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal

Faculty Publications

No abstract provided.


Using Electrochemical Impedance Spectroscopy As A Tool For Organic Coating Solute Saturation Monitoring, Branko N. Popov, Mohammed A. Alwohaibi, Ralph E. White Jan 1993

Using Electrochemical Impedance Spectroscopy As A Tool For Organic Coating Solute Saturation Monitoring, Branko N. Popov, Mohammed A. Alwohaibi, Ralph E. White

Faculty Publications

Electrochemical impedance spectroscopy (EIS) has been used to study the solute uptake for epoxy/phenolic (E/p) andepoxy/amine (E/a) thick-coated mild steel samples immersed for 160 days in 3.5 weight percent NaCl solution exposed to air. Samples with thicknesses of approximately 200 µm with an exposed surface area of 22.6 cm2 were used to follow solute saturation of the organic coating. Good agreement was obtained between the calculated and measured coating capacitance when, according to the diffusion equation, the coating capacitance was plotted against exposure time.


Mathematical Modeling Of The Formation Of Calcareous Deposits On Cathodically Protected Steel In Seawater, J. F. Yan, T. V. Nguyen, Ralph E. White, R. B. Griffin Jan 1993

Mathematical Modeling Of The Formation Of Calcareous Deposits On Cathodically Protected Steel In Seawater, J. F. Yan, T. V. Nguyen, Ralph E. White, R. B. Griffin

Faculty Publications

A first principle mathematical model of the formation of calcareous deposits on a cathodically protected steel rotatingdisk electrode in seawater is presented. The model includes equations which transport phenomena, electrochemical reactions,precipitation reactions, and a homogeneous reaction involved in the formation of calcareous deposits on an electrodesurface. Predicted concentration profiles show that a high concentration of OH ions on the electrode surface leads to the formation of calcareous deposits. The calcareous deposits contain mostly CaCO3, but the initial deposits are predicted to contain more Mg(OH)2 than CaCO3. The predicted calcareous deposits on the electrode surface …


Parametric Studies Of The Formation Of Calcareous Deposits On Cathodically Protected Steel In Seawater, J. F. Yan, Ralph E. White, R. B. Griffin Jan 1993

Parametric Studies Of The Formation Of Calcareous Deposits On Cathodically Protected Steel In Seawater, J. F. Yan, Ralph E. White, R. B. Griffin

Faculty Publications

A first principle mathematical model has been used to study the effects of ocean environment and cathodic protection on the formation of calcareous deposits and their ability to reduce the cathodic current density. These parameters include applied potential, rotation speed, temperature, salinity, and depth. The results showed the applied potential strongly influences the formation of calcareous deposits and their ability to reduce the cathodic current density. Among the environmental factors, rotation speed has the most influence on the cathodic current density. Salinity slightly influences the cathodic current density over the range of interest. Temperature is much more influential than salinity …


Novel Chemical Preparative Route For Semiconducting Mose2 Thin Films, K. C. Mandal, O. Savadogo Jan 1991

Novel Chemical Preparative Route For Semiconducting Mose2 Thin Films, K. C. Mandal, O. Savadogo

Faculty Publications

No abstract provided.


Electrochemical Characterization Of Electronically Conductive Polypyrrole On Cyclic Voltammograms, Taewhan Yeu, Ken-Ming Yin, Jose Carbajal, Ralph E. White Jan 1991

Electrochemical Characterization Of Electronically Conductive Polypyrrole On Cyclic Voltammograms, Taewhan Yeu, Ken-Ming Yin, Jose Carbajal, Ralph E. White

Faculty Publications

Experimental and theoretical cyclic voltammograms for electronically conducting polypyrrole film are obtained from the identical conditions and compared to each other to characterize electrochemical behavior of the polymer. A comparison of the simulated and experimental cyclic yoltammograms shows quantitative agreement. The profiles of the dependent variables show that the switching process is governed by the availability of the counter ion to the polypyrrole electrode and the amount of electroactive sites. Sensitivity analysis shows that the double layer effects have more influence in the cyclic voltammograms than the electrokinetic effects.