Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Faculty Publications

Series

2018

Distributed electric propulsion

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Large-Scale Multidisciplinary Optimization Of An Electric Aircraft For On-Demand Mobility, John Hwang, Andrew Ning Jan 2018

Large-Scale Multidisciplinary Optimization Of An Electric Aircraft For On-Demand Mobility, John Hwang, Andrew Ning

Faculty Publications

Distributed electric propulsion is a key enabling technology for on-demand electric aircraft concepts. NASA’s X-57 Maxwell X-plane is a demonstrator for this technology, and it features a row of high-lift propellers distributed along the leading edge of its wing to enable better aerodynamic efficiency at cruise and improved ride quality in addition to less noise and emissions. This study applies adjoint- based multidisciplinary design optimization to this highly coupled design problem. The propulsion, aerodynamics, and structures are modeled using blade element momentum theory, the vortex lat- tice method, and finite element analysis, respectively, and the full mission profile is discretized …


Distributed Electric Propulsion Effects On Traditional Aircraft Through Multidisciplinary Optimization, Kevin Moore, Andrew Ning Jan 2018

Distributed Electric Propulsion Effects On Traditional Aircraft Through Multidisciplinary Optimization, Kevin Moore, Andrew Ning

Faculty Publications

Electric aircraft face a steep tradeoff between the demand for runway performance and range. While fuel based propulsion technologies typically increase in specific power with increasing size, electric propulsion is typically much more scalable. This system scalability enables alternative designs including distributed propulsion, optionally powered propulsion units, and vectored thrust, which can all contribute to better runway performance and range. In this paper, we explore how continuously powered distributed propulsion can reduce takeoff distance while still satisfying range constraints. We use a combination of a blade element momentum method, a vortex lattice method, experimental data, and nonlinear optimization techniques to …