Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Distributions Of Nobel Metal Pd And Pt In Mesoporous Silica, J. Arbiol, A. Cabot, J. R. Morante, Fanglin Chen, Meilin Liu Oct 2002

Distributions Of Nobel Metal Pd And Pt In Mesoporous Silica, J. Arbiol, A. Cabot, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Mesoporous silicananostructures have been synthesized and loaded with Pd and Pt catalytic noble metals. It is found that Pd forms small nanoclusters (3–5 nm) on the surface of the mesoporous structure whereas Pt impregnation results in the inclusion of Pt nanostructures within the silica hexagonal pores (from nanoclusters to nanowires). It is observed that these materials have high catalyticproperties for CO–CH4CO–CH4CO–CH4 combustion, even in a thick film form. In particular, results indicate that the Pt and Pd dispersed in mesoporous silica are catalytically active as a selective filter for gas sensors.


Using Sputter Deposition To Increase Co Tolerance In A Proton-Exchange Membrane Fuel Cell, Andrew T. Haug, Ralph E. White, John W. Weidner, Wayne Huang, Steven Shi, Narender Rana, Stephan Grunow, Timothy C. Stoner, Alain E. Kaloyeros Jan 2002

Using Sputter Deposition To Increase Co Tolerance In A Proton-Exchange Membrane Fuel Cell, Andrew T. Haug, Ralph E. White, John W. Weidner, Wayne Huang, Steven Shi, Narender Rana, Stephan Grunow, Timothy C. Stoner, Alain E. Kaloyeros

Faculty Publications

Placing a layer of Ru atop a Pt anode increases the carbon monoxide tolerance of proton-exchange membrane fuel cells when oxygen is added to the fuel stream. Sputter-deposited Ru filter anodes composed of a single Ru layer and three Ru layers separated by Nafion-carbon ink, respectively, were compared to Pt, Pt:Ru alloy, and an ink-based Ru filter anodes. The amount of Pt in each anode was 0.15 mg/cm2 and the amount of Ru in each Ru-containing anode was 0.080 mg/cm2. For an anode feed consisting of hydrogen, 200 ppm CO, and 2% O2 (in the form …


Study Of Sn-Coated Graphite As Anode Material For Secondary Lithium-Ion Batteries, Basker Veeraraghavan, Anand Durairajan, Bala Haran, Branko N. Popov, Ronald Guidotti Jan 2002

Study Of Sn-Coated Graphite As Anode Material For Secondary Lithium-Ion Batteries, Basker Veeraraghavan, Anand Durairajan, Bala Haran, Branko N. Popov, Ronald Guidotti

Faculty Publications

Tin-graphite composites have been developed as an alternate anode material for Li-ion batteries using an autocatalytic deposition technique. The specific discharge capacity, coulombic efficiency, rate capability behavior, and cycle life of Sn-C composites has been studied using a variety of electrochemical methods. The amount of tin loading and the heating temperature have a significant effect on the composite performance. The synthesis conditions and Sn loading on graphite have been optimized to obtain the maximum reversible capacity for the composite electrode. Heating the composite converts it from amorphous to crystalline form. Apart from higher capacity, Sn-graphite composites possesses higher coulombic efficiency, …


Development Of A Novel Co Tolerant Proton Exchange Membrane Fuel Cell Anode, Andrew T. Haug, Ralph E. White, John W. Weidner, Wayne Huang Jan 2002

Development Of A Novel Co Tolerant Proton Exchange Membrane Fuel Cell Anode, Andrew T. Haug, Ralph E. White, John W. Weidner, Wayne Huang

Faculty Publications

Typically Pt is alloyed with metals such as Ru, Sn, or Mo to provide a more CO-tolerant, high-performance proton exchange membrane fuel cell (PEMFC) anode. In this work, a layer of carbon-supported Ru is placed between the Pt catalyst and the anode flow field to form a filter. When oxygen is added to the fuel stream, it was predicted that the slow H2 kinetics of Ru in this filter would become an advantage compared to Pt and Pt:Ru alloy anodes, allowing a greater percentage of O2 to oxidize adsorbed CO to CO2. With an anode feed …