Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Direct Foam Writing In Microgravity, Guy Jacob Cordonier, Cicely Sharafati, Spencer Mays, Lukas Thackery, Ellena Gemmen, Samuel Cyphert, Megan Brown, John Quinn Napolillo, Savannah Toney, Hunter Moore, John M. Kuhlman `, Konstantinos A. Sierros Dec 2021

Direct Foam Writing In Microgravity, Guy Jacob Cordonier, Cicely Sharafati, Spencer Mays, Lukas Thackery, Ellena Gemmen, Samuel Cyphert, Megan Brown, John Quinn Napolillo, Savannah Toney, Hunter Moore, John M. Kuhlman `, Konstantinos A. Sierros

Faculty & Staff Scholarship

Herein we report 2D printing in microgravity of aqueous-based foams containing metal oxide nanoparticles. Such hierarchical foams have potential space applications, for example for in situ habitat repair work, or for UV shielding. Foam line patterns of a TiO2-containing foam have been printed onto glass substrates via Direct Foam Writing (DFW) under microgravity conditions through a parabolic aircraft flight. Initial characterization of the foam properties (printed foam line width, bubble size, etc.) are presented. It has been found that gravity plays a significant role in the process of direct foam writing. The foam spread less over the substrate when deposited …


Trip Based Modeling Of Fuel Consumption In Modern Heavy-Duty Vehicles Using Artificial Intelligence, Sasanka Katreddi, Arvind Thiruvengadam Dec 2021

Trip Based Modeling Of Fuel Consumption In Modern Heavy-Duty Vehicles Using Artificial Intelligence, Sasanka Katreddi, Arvind Thiruvengadam

Faculty & Staff Scholarship

Heavy-duty trucks contribute approximately 20% of fuel consumption in the United States of America (USA). The fuel economy of heavy-duty vehicles (HDV) is affected by several real-world parameters like road parameters, driver behavior, weather conditions, and vehicle parameters, etc. Although modern vehicles comply with emissions regulations, potential malfunction of the engine, regular wear and tear, or other factors could affect vehicle performance. Predicting fuel consumption per trip based on dynamic on-road data can help the automotive industry to reduce the cost and time for on-road testing. Data modeling can easily help to diagnose the reason behind fuel consumption with a …


Exploring Dft+U Parameter Space With A Bayesian Calibration Assisted By Markov Chain Monte Carlo Sampling, Pedram Tavadze, Reese Boucher, Guillermo Avendaño-Franco, Keenan X. Kocan, Sobhit Singh, Viviana Dovale-Farelo, Wilfredo Ibarra-Hernández, Matthew B. Johnson, David S. Mebane, Aldo H. Romero Nov 2021

Exploring Dft+U Parameter Space With A Bayesian Calibration Assisted By Markov Chain Monte Carlo Sampling, Pedram Tavadze, Reese Boucher, Guillermo Avendaño-Franco, Keenan X. Kocan, Sobhit Singh, Viviana Dovale-Farelo, Wilfredo Ibarra-Hernández, Matthew B. Johnson, David S. Mebane, Aldo H. Romero

Faculty & Staff Scholarship

The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo …


Graphene Flake Self-Assembly Enhancement Via Stretchable Platforms And External Mechanical Stimuli, Harrison A. Loh, Claudio Marchi, Luca Magagnin, Konstantinos A. Sierros Nov 2021

Graphene Flake Self-Assembly Enhancement Via Stretchable Platforms And External Mechanical Stimuli, Harrison A. Loh, Claudio Marchi, Luca Magagnin, Konstantinos A. Sierros

Faculty & Staff Scholarship

While the green production and application of 2D functional nanomaterials, such as graphene flakes, in films for stretchable and wearable technologies is a promising platform for advanced technologies, there are still challenges involved in the processing of the deposited material to improve properties such as electrical conductivity. In applications such as wearable biomedical and flexible energy devices, the widely used flexible and stretchable substrate materials are incompatible with high-temperature processing traditionally employed to improve the electrical properties, which necessitates alternative manufacturing approaches and new steps for enhancing the film functionality. We hypothesize that a mechanical stimulus, in the form of …


An Application Of An Unequal-Area Facilities Layout Problem With Fixed-Shape Facilities, Alan Mckendall, Artak Hakobyan Oct 2021

An Application Of An Unequal-Area Facilities Layout Problem With Fixed-Shape Facilities, Alan Mckendall, Artak Hakobyan

Faculty & Staff Scholarship

The unequal-area facility layout problem (UA-FLP) is the problem of locating rectangular facilities on a rectangular floor space such that facilities do not overlap while optimizing some objective. The objective considered in this paper is minimizing the total distance materials travel between facilities. The UA-FLP considered in this paper considers facilities with fixed dimension and was motivated by the investigation of layout options for a production area at the Toyota Motor Manufacturing West Virginia (TMMWV) plant in Buffalo, WV, USA. This paper presents a mathematical model and a genetic algorithm for locating facilities on a continuous plant floor. More specifically, …


An Application Of An Unequal-Area Facilities Layout Problem With Fixed-Shape Facilities, Alan Mckendall, Artak Hakobyan Oct 2021

An Application Of An Unequal-Area Facilities Layout Problem With Fixed-Shape Facilities, Alan Mckendall, Artak Hakobyan

Faculty & Staff Scholarship

The unequal-area facility layout problem (UA-FLP) is the problem of locating rectangular facilities on a rectangular floor space such that facilities do not overlap while optimizing some objective. The objective considered in this paper is minimizing the total distance materials travel between facilities. The UA-FLP considered in this paper considers facilities with fixed dimension and was motivated by the investigation of layout options for a production area at the Toyota Motor Manufacturing West Virginia (TMMWV) plant in Buffalo, WV, USA. This paper presents a mathematical model and a genetic algorithm for locating facilities on a continuous plant floor. More specifically, …


A Scalable Framework For Map Matching Based Cooperative Localization, Chizhao Yang, Jared Strader, Yu Gu Jan 2021

A Scalable Framework For Map Matching Based Cooperative Localization, Chizhao Yang, Jared Strader, Yu Gu

Faculty & Staff Scholarship

Localization based on scalar field map matching (e.g., using gravity anomaly, magnetic anomaly, topographics, or olfaction maps) is a potential solution for navigating in Global Navigation Satellite System (GNSS)-denied environments. In this paper, a scalable framework is presented for cooperatively localizing a group of agents based on map matching given a prior map modeling the scalar field. In order to satisfy the communication constraints, each agent in the group is assigned to different subgroups. A locally centralized cooperative localization method is performed in each subgroup to estimate the poses and covariances of all agents inside the subgroup. Each agent in …