Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Enzymatic Biofuel Cells In A Sandwich Geometry With Compressed Carbon Nanotubes/Enzyme Electrodes & Hybrid Patch Applications, Biao Leng Aug 2019

Enzymatic Biofuel Cells In A Sandwich Geometry With Compressed Carbon Nanotubes/Enzyme Electrodes & Hybrid Patch Applications, Biao Leng

Dissertations

Enzymatic biofuel cells (EBFCs) convert the chemical energy of biofuels, such as glucose and methanol, into electrical energy by employing enzymes as catalysts. In contrast to conventional fuel cells, EBFCs have a simple membrane-free fuel cell design due to the high catalytic specificity of the enzymes, but the power densities obtained are lower. Although the primary goal of research on EBFCs has been to develop a sustainable power source that can be directly implanted in the human body to power bio-devices, other applications such as the use of a flexible film or fuel cell patch as a wearable power source …


Supercapacitors With Gate Electrodes, Tazima Selim Chowdhury May 2019

Supercapacitors With Gate Electrodes, Tazima Selim Chowdhury

Dissertations

A new approach to improve the capacitance of supercapacitors (SC) is proposed in this study. A typical SC is composed of an anode and a cathode; a separator in between them assures an unintentional discharge of the capacitor. The study focuses on a family of structured separators, either electronically active or passive which are called gates. An active structured separator layer has been fabricated and analyzed. The structured separator has characteristics of electrical diode and is fabricated out of functionalized carbon nanotubes (CNT). Improvement of the overall capacitance of SC, equipped with either active or passive structured separators demonstrated a …