Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Dartmouth Scholarship

Series

Animal

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

White Light-Informed Optical Properties Improve Ultrasound-Guided Fluorescence Tomography Of Photoactive Protoporphyrin Ix, Brendan P. Flynn, Alisha V. Dsouza, Stephen C. Kanick, Scott C. Davis, Brian W. Pogue Apr 2013

White Light-Informed Optical Properties Improve Ultrasound-Guided Fluorescence Tomography Of Photoactive Protoporphyrin Ix, Brendan P. Flynn, Alisha V. Dsouza, Stephen C. Kanick, Scott C. Davis, Brian W. Pogue

Dartmouth Scholarship

Subsurface fluorescence imaging is desirable for medical applications, including protoporphyrin-IX (PpIX)-based skin tumor diagnosis, surgical guidance, and dosimetry in photodynamic therapy. While tissue optical properties and heterogeneities make true subsurface fluorescence mapping an ill-posed problem, ultrasound-guided fluorescence-tomography (USFT) provides regional fluorescence mapping. Here USFT is implemented with spectroscopic decoupling of fluorescence signals (auto-fluorescence, PpIX, photoproducts), and white light spectroscopy-determined bulk optical properties. Segmented US images provide a priori spatial information for fluorescence reconstruction using region-based, diffuse FT. The method was tested in simulations, tissue homogeneous and inclusion phantoms, and an injected-inclusion animal model. Reconstructed fluorescence yield was linear with PpIX …


Non-Invasive Raman Tomographic Imaging Of Canine Bone Tissue, Matthew V. Schulmerich, Jacqueline H. Cole, Kathryn A. Dooley, Michael D. Morris, Jaclynn M. Kreider, Steven A. Goldstein, Subhadra Srinivasan, Brian W. Pogue Mar 2008

Non-Invasive Raman Tomographic Imaging Of Canine Bone Tissue, Matthew V. Schulmerich, Jacqueline H. Cole, Kathryn A. Dooley, Michael D. Morris, Jaclynn M. Kreider, Steven A. Goldstein, Subhadra Srinivasan, Brian W. Pogue

Dartmouth Scholarship

Raman spectroscopic diffuse tomographic imaging has been demonstrated for the first time. It provides a noninvasive, label-free modality to image the chemical composition of human and animal tissue and other turbid media. This technique has been applied to image the composition of bone tissue within an intact section of a canine limb. Spatially distributed 785-nm laser excitation was employed to prevent thermal damage to the tissue. Diffuse emission tomography reconstruction was used, and the location that was recovered has been confirmed by micro-computed tomography (micro-CT) images.

With recent advances, diffuse tomography shows promise for in vivo clinical imaging.1, …