Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Chemical and Biochemical Engineering Faculty Research & Creative Works

Series

Catalysis

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Atomic Layer Deposited Pt/Tio2-Sio2 And Pt/Zro2-Sio2 For Sequential Adsorption And Oxidation Of Vocs, Busuyi O. Adebayo, Han Yu, Ali A. Rownaghi, Xinhua Liang, Fateme Rezaei Sep 2022

Atomic Layer Deposited Pt/Tio2-Sio2 And Pt/Zro2-Sio2 For Sequential Adsorption And Oxidation Of Vocs, Busuyi O. Adebayo, Han Yu, Ali A. Rownaghi, Xinhua Liang, Fateme Rezaei

Chemical and Biochemical Engineering Faculty Research & Creative Works

In this work, Pt nanoparticles were loaded on SiO2, TiO2-thin-film-modified SiO2 (TiO2-SiO2), or ZrO2-thin-film-modified SiO2 (ZrO2-SiO2) particles and the composites were investigated for sequential adsorption and desorption/catalytic oxidation of benzene. The SiO2 was prepared via sol–gel method, while TiO2-SiO2 and ZrO2-SiO2 were synthesized via atomic layer deposition (ALD) thin film coating of TiO2 or ZrO2 on SiO2 particles substrate. In the sequential capture-reaction tests, the materials were first exposed to ca. 500 ppmv benzene …


Investigation Of Microwave-Assisted Synthesis Of Palladium Nanoparticles Supported On Fe3o4 As Efficient Recyclable Magnetic Catalysts For Suzuki-Miyaura Cross-Coupling, Hany A. Elazab May 2019

Investigation Of Microwave-Assisted Synthesis Of Palladium Nanoparticles Supported On Fe3o4 As Efficient Recyclable Magnetic Catalysts For Suzuki-Miyaura Cross-Coupling, Hany A. Elazab

Chemical and Biochemical Engineering Faculty Research & Creative Works

In this research, a facile and reproducible approach was implemented for the synthesis of palladium nanoparticles supported on Fe3O4 with remarkable activity as an ideal catalyst for Suzuki-Miyaura cross-coupling. Magnetite supported Pd nanoparticles reveal high activity in Suzuki-Miyaura coupling reactions since they could be recycled up to seven times with the same high catalytic activity. This adopted method of catalyst synthesis has many advantages, including reproducibility and the reliability of the adopted synthetic method. The produced catalyst has unique magnetic properties to facilitate catalyst recovery from the reaction mixture by using a strong magnet as an external …


Microwave-Assisted Synthesis Of Palladium Nanoparticles Supported On Copper Oxide In Aqueous Medium As An Efficient Catalyst For Suzuki Cross-Coupling Reaction, Hany A. Elazab, M. A. Sadek, Tamer T. El-Idreesy Jul 2018

Microwave-Assisted Synthesis Of Palladium Nanoparticles Supported On Copper Oxide In Aqueous Medium As An Efficient Catalyst For Suzuki Cross-Coupling Reaction, Hany A. Elazab, M. A. Sadek, Tamer T. El-Idreesy

Chemical and Biochemical Engineering Faculty Research & Creative Works

We report here a reliable green method for the synthesis of palladium nanoparticles supported on copper oxide as a highly active and efficient catalyst for Suzuki cross-coupling reaction. The experimental synthetic approach is based on microwave-assisted chemical reduction of an aqueous mixture of palladium and copper salt simultaneously using hydrazine hydrate as reducing agent. The catalyst was fully characterized using various techniques showing well-dispersed palladium nanoparticles. The catalytic activity and recyclability of the prepared catalyst were experimentally explored in the ligand-free Suzuki cross-coupling reaction with a diverse series of functionalized substrates. The synthesized Pd/CuO catalyst shows many advantages beside its …


The Catalytic Activity Of Copper Oxide Nanoparticles Towards Carbon Monoxide Oxidation Catalysis: Microwave – Assisted Synthesis Approach, Hany A. Elazab Jun 2018

The Catalytic Activity Of Copper Oxide Nanoparticles Towards Carbon Monoxide Oxidation Catalysis: Microwave – Assisted Synthesis Approach, Hany A. Elazab

Chemical and Biochemical Engineering Faculty Research & Creative Works

In this research, we report a simple, versatile, and reproducible method for the synthesis of copper oxide nanoparticles via microwave assisted synthesis approach. The important advantage of this catalyst is due to its important role not only in the low temperature oxidation of CO but also in potential applications in pharmaceutical and fine chemical synthesis. The results reveal that the copper oxide catalyst has particularly a remarkable high activity for CO oxidation catalysis as it was found that copper oxide (CuO) catalyst has 100% conversion of carbon monoxide into carbon dioxide at 175 oC. This also could be attributed to …


The Effect Of Graphene On Catalytic Performance Of Palladium Nanoparticles Decorated With Fe3o4, Co3o4, And Ni (Oh)2: Potential Efficient Catalysts Used For Suzuki Cross—Coupling, Hany A. Elazab, Sherif Moussa, Ali R. Siamaki, B. Frank Gupton, M. Samy El-Shall Jun 2017

The Effect Of Graphene On Catalytic Performance Of Palladium Nanoparticles Decorated With Fe3o4, Co3o4, And Ni (Oh)2: Potential Efficient Catalysts Used For Suzuki Cross—Coupling, Hany A. Elazab, Sherif Moussa, Ali R. Siamaki, B. Frank Gupton, M. Samy El-Shall

Chemical and Biochemical Engineering Faculty Research & Creative Works

Abstract: In this research, we report a scientific investigation of an efficient method used for the synthesis of highly active Palladium Nanoparticles decorated with Fe3O4, Co3O4, and Ni (OH)2 Supported on Graphene as Potential Efficient Catalysts for Suzuki Cross—Coupling. Pd/Fe3O4 nanoparticles supported on graphene nanosheets (Pd/Fe3O4/G) showed an excellent catalytic activity for Suzuki coupling reactions and recycled for up to four times without loss of catalytic activity. An efficient magnetic catalyst has been successfully synthesized using a simple, reproducible fast and reliable method using microwave …


Green Synthesis Of Copper Oxide Nanoparticles In Aqueous Medium As A Potential Efficient Catalyst For Catalysis Applications, Waad Mohsen, M. A. Sadek, Hany A. Elazab Jan 2017

Green Synthesis Of Copper Oxide Nanoparticles In Aqueous Medium As A Potential Efficient Catalyst For Catalysis Applications, Waad Mohsen, M. A. Sadek, Hany A. Elazab

Chemical and Biochemical Engineering Faculty Research & Creative Works

In this research, we have developed a reliable green method for the synthesis of copper oxide nanoparticles as a potential efficient catalyst for several catalysis applications. In our experimental approach, microwave-assisted synthesis technique was used in order to perform chemical reduction of copper salt using hydrazine hydrate as a strong reducing agent. The prepared catalyst was characterized using various techniques showing the formation of well dispersed copper oxide nanoparticles. The synthesized Copper oxide catalyst shows many advantages including the use of environmentally benign solvent systems, green synthetic approach, and mild reaction conditions.


Modeling Of Trickle-Bed Reactors With Exothermic Reactions Using Cell Network Approach, Jing Guo, Yi Jiang, Muthanna H. Al-Dahhan Feb 2008

Modeling Of Trickle-Bed Reactors With Exothermic Reactions Using Cell Network Approach, Jing Guo, Yi Jiang, Muthanna H. Al-Dahhan

Chemical and Biochemical Engineering Faculty Research & Creative Works

One-Dimensional (1D) and Two-Dimensional (2D) Cell Network Models Were Developed to Simulate the Steady-State Behavior of Trickle-Bed Reactors Employed for the Highly Exothermic Hydrotreating of Benzene. the Multiphase Mass Transfer-Reaction Model and Novel Solution Method Are Discussed in This Report. the 1D Model Was Shown to Satisfactorily Simulate the Axial Temperature Field Observed Experimentally for Multiphase Flow with Exothermic Reactions. the 2D Reactor Modeling Provided Valuable Information About Local Hot Spot Behavior within the Multiphase Reactor, Identifying Situations in Which Hot Spots May Form. the Model Took into Consideration the Heterogeneous Nature of Liquid Distribution, Including Radial Liquid Maldistribution and …


Catalytic Wet Air Oxidation Of Phenol In Concurrent Downflow And Upflow Packed-Bed Reactors Over Pillared Clay Catalyst, Jing Guo, Muthanna H. Al-Dahhan Feb 2005

Catalytic Wet Air Oxidation Of Phenol In Concurrent Downflow And Upflow Packed-Bed Reactors Over Pillared Clay Catalyst, Jing Guo, Muthanna H. Al-Dahhan

Chemical and Biochemical Engineering Faculty Research & Creative Works

An Experimental Study is Presented for Comparing the Behavior of a Packed Bed Reactor in the Catalytic Liquid-Phase Oxidation of Aqueous Phenol with Two Modes of Operation, Downflow and Upflow. the Operating Parameters Investigated Included Temperature, Reactor Pressure, Gas Flowrate, Liquid Hourly Space Velocity and Feed Concentration. Because of the Completely Wetted Catalyst, the Upflow Reactor Generally Performs Better for High Pressures and Low Feed Concentrations When the Liquid Reactant Limitation Controls the Rate. the Interaction between the Reactor Hydrodynamics, Mass Transfer, and Reaction Kinetics is Discussed. for Both Operation Modes, Complete Phenol Removal and Significant Total Organic Carbon (TOC) …


A Sequential Approach To Modeling Catalytic Reactions In Packed-Bed Reactors, Jing Guo, Muthanna H. Al-Dahhan May 2004

A Sequential Approach To Modeling Catalytic Reactions In Packed-Bed Reactors, Jing Guo, Muthanna H. Al-Dahhan

Chemical and Biochemical Engineering Faculty Research & Creative Works

A Sequential Modeling Approach is Proposed to Simulate Catalytic Reactions in Packed-Bed Reactors. the Hydrogenation of Alpha-Methylstyrene and Wet Oxidation of Phenol Are Selected as Studied Cases. the Modeling Scheme Combines a Reactor Scale Axial Dispersion Model with a Pellet Scale Model. Without Involving Any Fitting Parameters, Such an Approach Accounts for the Non-Linear Reaction Kinetics Expression and Different Types of Pellet-Liquid Wetting Contact. to Validate the Developed Modeling Scheme and the Parallel Approach Reported in the Literature, the Experimental Observations for Hydrogenation of Alpha-Methylstyrene to Cumene Have Been Employed. the Predicted Results by Both Approaches Agree Reasonably with the …