Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Hollow And Porous Plasmonic Nanostructures For Highly Efficient Chemical And Biological Sensing, Keng-Ku Liu Aug 2017

Hollow And Porous Plasmonic Nanostructures For Highly Efficient Chemical And Biological Sensing, Keng-Ku Liu

McKelvey School of Engineering Theses & Dissertations

Localized surface plasmon resonance (LSPR) involves the collective and coherent oscillation of dielectrically confined conduction electrons. The LSPR wavelength of noble metal nanoparticles (such as gold, silver and copper), which falls into the visible and near infrared range of the electromagnetic spectrum, is sensitive to the composition, size, shape, dielectric properties of the surrounding medium, and proximity to other nanostructures (plasmon coupling). Based on the sensitivity of the surface plasmon resonance to the changes in the dielectric properties of the surrounding medium and the enhancement of the electromagnetic (EM) field in proximity of metal nanostructures, two important classes of plasmonic …


Flexible Plasmonic Sensing Substrates And Their Application In Explosive Sensing, Justin Bae, Srikanth Singamaneni May 2017

Flexible Plasmonic Sensing Substrates And Their Application In Explosive Sensing, Justin Bae, Srikanth Singamaneni

McKelvey School of Engineering Theses & Dissertations

With an increasing use of improvised explosive devices in combat and terrorism, there is an urgent need for novel methods of trace explosive detection that can provide an inexpensive and effective solution. This study focuses on the development of such platform using flexible surface enhanced Raman scattering (SERS) substrates. Gold nanorods(AuNR) functionalized with peptides selective to explosive molecules, trinitrotoluene(TNT) and dinitrotoluene (DNT) were immobilized on various substrates to fabricate a flexible SERS substrate. The peptide conjugated AuNRs can detect TNT and DNT vapors, and the cysteamine conjugated nanorods could detect TNT in aqueous solution down to 100 nM.

Additionally, we …