Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Washington University in St. Louis

2017

Chemical Looping Combustion

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Computational Fluid Dynamics Modeling And Simulations Of Fast Fluidized Bed And Moving Bed Reactors For Chemical Looping Combustion, Mengqiao Yang May 2017

Computational Fluid Dynamics Modeling And Simulations Of Fast Fluidized Bed And Moving Bed Reactors For Chemical Looping Combustion, Mengqiao Yang

McKelvey School of Engineering Theses & Dissertations

Chemical-looping combustion (CLC) is a next generation carbon capture technology with high efficiency and low cost. To assess the potential of this technology for industrial scale power plants, thousands of laboratory scale and many pilot-scale plants have been designed and tested. In recent years, to obtain a thorough understanding of the hydrodynamic behavior inside the reactors and chemical looping combustion process, high-fidelity numerical simulation using Computational Fluid Dynamics(CFD) have been performed. However, CFD simulations in the literature have been limited reported compared to the laboratory scale experiments.

In this thesis, cold flow simulations of a CLC fuel reactor are performed …


Cfd Simulations Of Chemical Looping Combustion In A Packed Bed And A Bubbling Bed Fuel Reactor, Guanglei Ma May 2017

Cfd Simulations Of Chemical Looping Combustion In A Packed Bed And A Bubbling Bed Fuel Reactor, Guanglei Ma

McKelvey School of Engineering Theses & Dissertations

Chemical-looping combustion (CLC) is a next generation combustion technology that has shown great promise in addressing the need for high-efficiency low-cost carbon capture from fossil fueled power plants to address the rising carbon emissions. Although there have been a number of experimental studies on CLC in recent years, CFD simulations have been limited in the literature on CLC. The development and confidence in high-fidelity simulations of the CLC process is a necessary step towards facilitating the transition from laboratory-scale experiments to deployment of this technology on an industrial scale. In this research, first the CFD simulations of a CLC packed …