Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Learning In The Real World: Constraints On Cost, Space, And Privacy, Matt J. Kusner Aug 2016

Learning In The Real World: Constraints On Cost, Space, And Privacy, Matt J. Kusner

McKelvey School of Engineering Theses & Dissertations

The sheer demand for machine learning in fields as varied as: healthcare, web-search ranking, factory automation, collision prediction, spam filtering, and many others, frequently outpaces the intended use-case of machine learning models. In fact, a growing number of companies hire machine learning researchers to rectify this very problem: to tailor and/or design new state-of-the-art models to the setting at hand.

However, we can generalize a large set of the machine learning problems encountered in practical settings into three categories: cost, space, and privacy. The first category (cost) considers problems that need to balance the accuracy of a machine learning model …


Revelation Of Yin-Yang Balance In Microbial Cell Factories By Data Mining, Flux Modeling, And Metabolic Engineering, Gang Wu May 2016

Revelation Of Yin-Yang Balance In Microbial Cell Factories By Data Mining, Flux Modeling, And Metabolic Engineering, Gang Wu

McKelvey School of Engineering Theses & Dissertations

The long-held assumption of never-ending rapid growth in biotechnology and especially in synthetic biology has been recently questioned, due to lack of substantial return of investment. One of the main reasons for failures in synthetic biology and metabolic engineering is the metabolic burdens that result in resource losses. Metabolic burden is defined as the portion of a host cells resources either energy molecules (e.g., NADH, NADPH and ATP) or carbon building blocks (e.g., amino acids) that is used to maintain the engineered components (e.g., pathways). As a result, the effectiveness of synthetic biology tools heavily dependents on cell capability to …


A General Framework Of Large-Scale Convex Optimization Using Jensen Surrogates And Acceleration Techniques, Soysal Degirmenci May 2016

A General Framework Of Large-Scale Convex Optimization Using Jensen Surrogates And Acceleration Techniques, Soysal Degirmenci

McKelvey School of Engineering Theses & Dissertations

In a world where data rates are growing faster than computing power, algorithmic acceleration based on developments in mathematical optimization plays a crucial role in narrowing the gap between the two. As the scale of optimization problems in many fields is getting larger, we need faster optimization methods that not only work well in theory, but also work well in practice by exploiting underlying state-of-the-art computing technology.

In this document, we introduce a unified framework of large-scale convex optimization using Jensen surrogates, an iterative optimization method that has been used in different fields since the 1970s. After this general treatment, …