Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss Jan 2021

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss

Theses and Dissertations

Warm dense plasma is the matter that exists, roughly, in the range of 10,000 to 10,000,000 Kelvin and has solid-like densities, typically between 0.1 and 10 grams per centimeter. Warm dense fluids like hydrogen, helium, and carbon are believed to make up the interiors of many planets, white dwarfs, and other stars in our universe. The existence of warm dense matter (WDM) on Earth, however, is very rare, as it can only be created with high-energy sources like a nuclear explosion. In such an event, theoretical and computational models that accurately predict the response of certain materials are thus very …


Generation Of Warm Dense Plasma On Solar Panel Infrastructure In Exo-Atmospheric Conditions, Harrison C. Wenzel Jan 2020

Generation Of Warm Dense Plasma On Solar Panel Infrastructure In Exo-Atmospheric Conditions, Harrison C. Wenzel

Theses and Dissertations

The use of a weaponized thermo-nuclear device in exo-atmospheric conditions would be of great impact on the material integrity of orbiting satellite infrastructure. Particular damage would occur to the multi-layered, solar cell components of such satellites. The rapid absorption of X-ray radiation originating from a nuclear blast into these layers occurs over a picosecond time scale and leads to the generation of Warm Dense Plasma (WDP). While incredibly difficult and costly to replicate in a laboratory setting, a collection of computational techniques and software libraries may be utilized to simulate the intricate atomic and subatomic physics characteristics of such an …


Comparative Studies Of Diffusion Models And Artificial Neural Intelligence On Electrochemical Process Of U And Zr Dissolutions In Licl-Kcl Eutectic Salts, Samaneh Rakhshan Pouri Jan 2017

Comparative Studies Of Diffusion Models And Artificial Neural Intelligence On Electrochemical Process Of U And Zr Dissolutions In Licl-Kcl Eutectic Salts, Samaneh Rakhshan Pouri

Theses and Dissertations

The electrorefiner (ER) is the heart of pyroprocessing technology operating at a high-temperature (723 K – 773 K) to separate uranium from Experimental Breeder Reactor-II (EBR-II) used metallic fuel. One of the most common electroanalytical methods for determining the thermodynamic and electrochemical behavior of elemental species in the eutectic molten salt LiCl-KCl inside ER is cyclic voltammetry (CV). Information from CV can possibly be used to estimate diffusion coefficients, apparent standard potentials, transfer coefficients, and numbers of electron transferred. Therefore, predicting the trace of each species from the CV method in an absence of experimental data is important for safeguarding …


Design & Analysis Of A Computer Experiment For An Aerospace Conformance Simulation Study, Ryan W. Gryder Jan 2016

Design & Analysis Of A Computer Experiment For An Aerospace Conformance Simulation Study, Ryan W. Gryder

Theses and Dissertations

Within NASA's Air Traffic Management Technology Demonstration # 1 (ATD-1), Interval Management (IM) is a flight deck tool that enables pilots to achieve or maintain a precise in-trail spacing behind a target aircraft. Previous research has shown that violations of aircraft spacing requirements can occur between an IM aircraft and its surrounding non-IM aircraft when it is following a target on a separate route. This research focused on the experimental design and analysis of a deterministic computer simulation which models our airspace configuration of interest. Using an original space-filling design and Gaussian process modeling, we found that aircraft delay assignments …


The Design And Validation Of A Novel Computational Simulation Of The Leg For The Investigation Of Injury, Disease, And Surgical Treatment, Joseph Iaquinto May 2010

The Design And Validation Of A Novel Computational Simulation Of The Leg For The Investigation Of Injury, Disease, And Surgical Treatment, Joseph Iaquinto

Theses and Dissertations

Computational modeling of joints and their function, a developing field, is becoming a significant health and wellness tool of our modern age. Due to familiarity of prior research focused on the lower extremity, a foot and ankle 3D computational model was created to explore the potential for these computational methods. The method of isolating CT scanned tissue and rendering a patient specific anatomy in the digital domain was accomplished by the use of MIMICS™ , SolidWorks™, and COSMOSMotion™ – all available in the commercial domain. The kinematics of the joints are driven solely by anatomically modeled soft tissue applied to …