Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

A Sine-Summation Algorithm For The Prediction Of Ship Deck Motion, Christian R. Bolander, Douglas F. Hunsaker Jan 2019

A Sine-Summation Algorithm For The Prediction Of Ship Deck Motion, Christian R. Bolander, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

Landing a fixed-wing aircraft on a moving aircraft carrier is a risky and inefficient process. Having an accurate prediction of ship deck motion decreases the risk posed to both the pilot and the aircraft and increases the efficiency of landing maneuvers. The present work proposes the use of a sine-summation algorithm to predict future ship motion. The algorithm decomposes recorded ship acceleration data into its characteristic harmonic parameters using a fast Fourier transform. The harmonic parameters are then used in a summation of sine waves to create a fit for the acceleration data, which is projected into future time intervals …


Numerical Algorithm For Wing-Structure Design, Jeffrey D. Taylor, Douglas F. Hunsaker, James J. Joo Jan 2018

Numerical Algorithm For Wing-Structure Design, Jeffrey D. Taylor, Douglas F. Hunsaker, James J. Joo

Mechanical and Aerospace Engineering Student Publications and Presentations

Low-fidelity aerostructural optimization routines have often focused on determining the optimal spanloads for a given wing configuration. Several analytical approaches have been developed that can predict optimal lift distributions on rectangular wings with a specific payload distribution. However, when applied to wings of arbitrary geometry and payload distribution, these approaches fail. Increasing the utility and accuracy of these analytical methods can result in important benefits during later design phases. In this paper, an iterative algorithm is developed that uses numerical integration to predict the distribution of structural weight required to support the bending moments on a wing with arbitrary geometry …


Simplex Algorithm For Optimizing Drainage Design, Majid Ehteshami, Lyman S. Willardson, Richard C. Peralta Jan 1995

Simplex Algorithm For Optimizing Drainage Design, Majid Ehteshami, Lyman S. Willardson, Richard C. Peralta

Civil and Environmental Engineering Faculty Publications

A methodology and computer model is developed to determine economically optimum closed subsurface drainage systems in irrigated areas. The model maximizes net benefits, by comparing profit driven by crop yield to drain system cost and selects an optimum drain layout. The optimization methodology used, is the SIMPLEX method, Neider and Mead. The SIMPLEX model was linked to the subsurface drainage model DRAINMOD Skaggs [10], and to the surface hydraulic model KINE, Walker and Skogerboe[14]. The selected optimum drainage system maximizes the difference between total revenue, and the total cost of installation, operation and management of a particular drainage system. The …


Use Of Simplex Algorithm For Optimizing Simulation Models, M. Ehteshami, L. S. Willardson, Richard C. Peralta Jun 1990

Use Of Simplex Algorithm For Optimizing Simulation Models, M. Ehteshami, L. S. Willardson, Richard C. Peralta

Civil and Environmental Engineering Faculty Publications

A methodology and computer model is developed to determine economically optimum closed subsurface drainage systems in irrigated areas. The mode 1 maximizes net benefits, by comparing profit driven by crop yields to drain system cost and selects an optimum drain layout. The optimization methodology used is the SIMPLEX method (Nelder and Mead, 1965). The SIMPLEX model was linked to the subsurface drainage model DRAINMOD (Skaggs, 1982) and to the surface hydraulic model KINE (Walker and Skogerboe 1987). The selected optimum drainage system maximizes the difference between total revenue, and the total cost of installation, operation and management of a particular …