Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

University of South Carolina

Series

Platinum alloys

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Effect Of Titanium Dioxide Supports On The Activity Of Pt-Ru Toward Electrochemical Oxidation Of Methanol, Roderick E. Fuentes, Brenda L. García, John W. Weidner Jan 2011

Effect Of Titanium Dioxide Supports On The Activity Of Pt-Ru Toward Electrochemical Oxidation Of Methanol, Roderick E. Fuentes, Brenda L. García, John W. Weidner

Faculty Publications

TiO2and Nb-TiO2 were investigated as stable supports for Pt-Ru electrocatalysts towards methanol oxidation. X-ray photo-electron spectroscopy (XPS) data for all these TiO2-based supports show oxidation states of Ti4+, with no Ti3+, suggesting low electronic conductivity. However, the deposition of metal nanoparticles onto the supports at loadings of 60 wt% metal dramatically increased conductivity, making these electrodes (metal particles + support) suitable for electrochemistry even though the supports have low conductivity. For some of these TiO2-based supports, the activity of Pt-Ru towards methanol oxidation was excellent, even surpassing the activity …


Low-Temperature Synthesis Of A Ptru/Nb0.1ti0.9o2 Electrocatalyst For Methanol Oxidation, Brenda L. García, Roderick Fuentes, John W. Weidner Jan 2007

Low-Temperature Synthesis Of A Ptru/Nb0.1ti0.9o2 Electrocatalyst For Methanol Oxidation, Brenda L. García, Roderick Fuentes, John W. Weidner

Faculty Publications

Niobium was doped into anatase TiO2 support at 10 mol % (Nb0.1Ti0.9O2) using sol-gel chemistry. A PtRu/Nb0.1Ti0.9O2 catalyst was synthesized by LiBH4 reduction in tetrahydrofuran. The methanol electro-oxidation activity of the catalyst shows that this oxide support was electrically conductive. The current (A/gPt) was 6% higher on the PtRu/Nb0.1Ti0.9O2 catalyst compared to a commercial PtRu/C catalyst at 25°C. The electrochemically active surface area of the PtRu/C was 94% higher than PtRu/Nb0.1Ti0.9O2, thus the current per active site was 100% higher on PtRu/Nb0.1Ti0.9O2. A membrane electrode assembly with PtRu/Nb0.1Ti0.9O2 had 46% higher current (A/gPt) than an equivalent E-TEK membrane electrode assembly …


Development Of Method For Synthesis Of Pt–Co Cathode Catalysts For Pem Fuel Cells, Xuguang Li, Héctor R. Colón-Mercado, Gang Wu, Jong-Won Lee, Branko N. Popov Jan 2007

Development Of Method For Synthesis Of Pt–Co Cathode Catalysts For Pem Fuel Cells, Xuguang Li, Héctor R. Colón-Mercado, Gang Wu, Jong-Won Lee, Branko N. Popov

Faculty Publications

A procedure was developed to synthesize a platinum–cobalt (Pt–Co) alloy electrocatalyst for oxygen reduction using Co/C composite as a support. The Pt–Co/C catalysts were synthesized through: (i) chemical oxidation of carbon black, (ii) Co deposition on the oxidized carbon using a chelation method, (iii) chemical treatment in an acidic medium to remove excess of Co on the carbon surface, (iv) Pt deposition onto the Co/C support, and (v) postheat treatment to form the Pt–Co alloy catalyst. The synthesized Pt–Co/C catalyst showed improved activity and long-term stability in polymer electrolyte membrane …